CAIE M2 (Mechanics 2) 2015 June

Question 1
View details
1 A uniform semicircular lamina has diameter \(A B\) of length 0.8 m .
  1. Find the distance of the centre of mass of the lamina from \(A B\). The lamina rests in a vertical plane, with the point \(B\) of the lamina in contact with a rough horizontal surface and with \(A\) vertically above \(B\). Equilibrium is maintained by a force of magnitude 6 N in the plane of the lamina, applied to the lamina at \(A\) and acting at an angle of \(20 ^ { \circ }\) below the horizontal.
  2. Calculate the mass of the lamina.
Question 2
View details
2 A particle \(P\) is projected with speed \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(60 ^ { \circ }\) above the horizontal from a point \(O\) on horizontal ground. \(P\) is moving at an angle of \(45 ^ { \circ }\) above the horizontal at the instant 1.5 s after projection.
  1. Find \(V\).
  2. Hence calculate the horizontal and vertical displacements of \(P\) from \(O\) at the instant 1.5 s after projection.
Question 3
View details
3 One end of a light elastic string of natural length 0.4 m and modulus of elasticity 20 N is attached to a fixed point \(A\) on a smooth plane inclined at \(30 ^ { \circ }\) to the horizontal. The other end of the string is attached to a particle \(P\) of mass 0.5 kg which rests in equilibrium on the plane.
  1. Calculate the extension of the string.
    \(P\) is projected down the plane from the equilibrium position with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The extension of the string is \(e \mathrm {~m}\) when the speed of the particle is \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for the first time.
  2. Find \(e\).
Question 4
View details
4 A small ball \(B\) is projected from a point 1.5 m above horizontal ground with initial speed \(29 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(30 ^ { \circ }\) above the horizontal.
  1. Show that \(B\) strikes the ground 3 s after projection.
  2. Find the speed and direction of motion of \(B\) immediately before it strikes the ground.
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{8f8492a7-8a83-4eb2-81ee-99b4a385b704-3_876_483_260_840} A uniform triangular prism of weight 20 N rests on a horizontal table. \(A B C\) is the cross-section through the centre of mass of the prism, where \(B C = 0.5 \mathrm {~m} , A B = 0.4 \mathrm {~m} , A C = 0.3 \mathrm {~m}\) and angle \(B A C = 90 ^ { \circ }\). The vertical plane \(A B C\) is perpendicular to the edge of the table. The point \(D\) on \(A C\) is at the edge of the table, and \(A D = 0.25 \mathrm {~m}\). One end of a light elastic string of natural length 0.6 m and modulus of elasticity 48 N is attached to \(C\) and a particle of mass 2.5 kg is attached to the other end of the string. The particle is released from rest at \(C\) and falls vertically (see diagram).
  1. Show that the tension in the string is 60 N at the instant when the prism topples.
  2. Calculate the speed of the particle at the instant when the prism topples.
Question 6
View details
6 A cyclist and her bicycle have a total mass of 60 kg . The cyclist rides in a horizontal straight line, and exerts a constant force in the direction of motion of 150 N . The motion is opposed by a resistance of magnitude \(12 v \mathrm {~N}\), where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the cyclist's speed at time \(t \mathrm {~s}\) after passing through a fixed point \(A\).
  1. Show that \(5 \frac { \mathrm {~d} v } { \mathrm {~d} t } = 12.5 - v\).
  2. Given that the cyclist passes through \(A\) with speed \(11.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), solve this differential equation to show that \(v = 12.5 - \mathrm { e } ^ { - 0.2 t }\).
  3. Express the displacement of the cyclist from \(A\) in terms of \(t\).
Question 7
View details
7 A particle \(P\) of mass 0.7 kg is attached to one end of a light inextensible string of length 0.5 m . The other end of the string is attached to a fixed point \(A\) which is \(h \mathrm {~m}\) above a smooth horizontal surface. \(P\) moves in contact with the surface with uniform circular motion about the point on the surface which is vertically below \(A\).
  1. Given that \(h = 0.14\), find an inequality for the angular speed of \(P\).
  2. Given instead that the magnitude of the force exerted by the surface on \(P\) is 1.4 N and that the speed of \(P\) is \(2.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), calculate the tension in the string and the value of \(h\).