1 Show that the system of equations
$$\begin{aligned}
14 x - 4 y + 6 z & = 5
x + y + k z & = 3
- 21 x + 6 y - 9 z & = 14
\end{aligned}$$
where \(k\) is a constant, does not have a unique solution and interpret this situation geometrically.
2 Find the roots of the equation \(( z + 5 i ) ^ { 3 } = 4 + 4 \sqrt { 3 } i\), giving your answers in the form \(r \cos \theta + i ( r \sin \theta - 5 )\), where \(r > 0\) and \(0 < \theta < 2 \pi\).
3 Find the first three terms in the Maclaurin's series for \(\tanh ^ { - 1 } \left( \frac { 1 } { 2 } e ^ { x } \right)\) in the form \(\frac { 1 } { 2 } \ln a + b x + c x ^ { 2 }\), giving the exact values of the constants \(a , b\) and \(c\).
4 Find the particular solution of the differential equation
$$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + 3 y = 27 x ^ { 2 }$$
given that, when \(x = 0 , y = 2\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = - 8\).
Starting from the definitions of cosh and sinh in terms of exponentials, prove that
$$\sinh 2 x = 2 \sinh x \cosh x$$
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_67_1550_374_347}
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_58_1569_475_328}
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_58_1569_566_328}
\includegraphics[max width=\textwidth, alt={}]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_54_1566_657_328} ....................................................................................................................................................... .
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_54_1570_840_324}
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_53_1570_932_324}
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_53_1570_1023_324}
Using the substitution \(\mathrm { u } = \sinh \mathrm { x }\), find \(\int \sinh ^ { 2 } 2 x \cosh x \mathrm { dx }\).
Find the particular solution of the differential equation
$$\frac { d y } { d x } + y \tanh x = \sinh ^ { 2 } 2 x$$
given that \(y = 4\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
State the sum of the series \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 }\), for \(z \neq 1\).
By letting \(z = \cos \theta + i \sin \theta\), where \(\cos \theta \neq 1\), show that
$$1 + \cos \theta + \cos 2 \theta + \ldots + \cos ( n - 1 ) \theta = \frac { 1 } { 2 } \left( 1 - \cos n \theta + \frac { \sin n \theta \sin \theta } { 1 - \cos \theta } \right)$$
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-15_833_785_214_680}
The diagram shows the curve with equation \(\mathrm { y } = \cos \mathrm { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
By considering the sum of the areas of these rectangles, show that
$$\int _ { 0 } ^ { 1 } \cos x d x < \frac { 1 } { 2 n } \left( 1 - \cos 1 + \frac { \sin 1 \sin \frac { 1 } { n } } { 1 - \cos \frac { 1 } { n } } \right)$$
Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } \cos x d x\).
If you use the following page to complete the answer to any question, the question number must be clearly shown.