8
\includegraphics[max width=\textwidth, alt={}, center]{5b43cb39-7560-4484-ba6f-17303e986f47-10_369_1531_260_306}
The diagram shows the curve \(\mathrm { y } = \frac { 1 } { \sqrt { \mathrm { x } ^ { 2 } + \mathrm { x } + 1 } }\) for \(x \geqslant 0\), together with a set of \(n\) rectangles of unit width. By considering the sum of the areas of these rectangles, show that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { \sqrt { r ^ { 2 } + r + 1 } } < \ln \left( \frac { 1 } { 3 } + \frac { 2 } { 3 } n + \frac { 2 } { 3 } \sqrt { n ^ { 2 } + n + 1 } \right)$$