CAIE Further Paper 2 2022 June — Question 4

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2022
SessionJune
TopicArea Under & Between Curves

4 The diagram shows the curve with equation \(\mathrm { y } = 2 ^ { \mathrm { x } }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(N\) rectangles each of width \(\frac { 1 } { N }\).
\includegraphics[max width=\textwidth, alt={}, center]{114ece0d-558d-4c02-8a77-034b3681cff9-06_824_1161_376_450}
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } 2 ^ { x } d x < U _ { N }\), where $$\mathrm { U } _ { \mathrm { N } } = \frac { 2 ^ { \frac { 1 } { \mathrm {~N} } } } { \mathrm {~N} \left( 2 ^ { \frac { 1 } { \mathrm {~N} } } - 1 \right) }$$
  2. Use a similar method to find, in terms of \(N\), a lower bound \(\mathrm { L } _ { \mathrm { N } }\) for \(\int _ { 0 } ^ { 1 } 2 ^ { x } \mathrm {~d} x\).
  3. Find the least value of \(N\) such that \(\mathrm { U } _ { \mathrm { N } } - \mathrm { L } _ { \mathrm { N } } < 10 ^ { - 4 }\).