CAIE Further Paper 2 (Further Paper 2) 2022 June

Question 1
View details
1 The curve \(C\) has polar equation \(r = \mathrm { e } ^ { \frac { 3 } { 4 } \theta }\) for \(0 \leqslant \theta \leqslant \alpha\).
Given that the length of \(C\) is \(s\), find \(\alpha\) in terms of \(s\).
Question 2
View details
2
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$\cosh 2 x = 2 \sinh ^ { 2 } x + 1$$
  2. Find the set of values of \(k\) for which \(\cosh 2 \mathrm { x } = \mathrm { ksinh } \mathrm { x }\) has two distinct real roots.
Question 3
View details
3 The variables \(t\) and \(x\) are related by the differential equation $$\frac { d ^ { 2 } x } { d t ^ { 2 } } + \frac { d x } { d t } + x = t ^ { 2 } + 1$$
  1. Find the general solution for \(x\) in terms of \(t\).
  2. Deduce an approximate value of \(\frac { \mathrm { d } ^ { 2 } \mathrm { x } } { \mathrm { dt } ^ { 2 } }\) for large positive values of \(t\).
Question 4
View details
4 The diagram shows the curve with equation \(\mathrm { y } = 2 ^ { \mathrm { x } }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(N\) rectangles each of width \(\frac { 1 } { N }\).
\includegraphics[max width=\textwidth, alt={}, center]{114ece0d-558d-4c02-8a77-034b3681cff9-06_824_1161_376_450}
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } 2 ^ { x } d x < U _ { N }\), where $$\mathrm { U } _ { \mathrm { N } } = \frac { 2 ^ { \frac { 1 } { \mathrm {~N} } } } { \mathrm {~N} \left( 2 ^ { \frac { 1 } { \mathrm {~N} } } - 1 \right) }$$
  2. Use a similar method to find, in terms of \(N\), a lower bound \(\mathrm { L } _ { \mathrm { N } }\) for \(\int _ { 0 } ^ { 1 } 2 ^ { x } \mathrm {~d} x\).
  3. Find the least value of \(N\) such that \(\mathrm { U } _ { \mathrm { N } } - \mathrm { L } _ { \mathrm { N } } < 10 ^ { - 4 }\).
Question 5
View details
5 The variables \(x\) and \(y\) are such that \(y = 0\) when \(x = 0\) and $$( x + 1 ) y + ( x + y + 1 ) ^ { 3 } = 1$$
  1. Show that \(\frac { \mathrm { dy } } { \mathrm { dx } } = - \frac { 3 } { 4 }\) when \(x = 0\).
  2. Find the Maclaurin's series for \(y\) up to and including the term in \(x ^ { 2 }\).
Question 6 10 marks
View details
6 Use the substitution \(y = v x\) to find the solution of the differential equation $$x \frac { d y } { d x } = y + \sqrt { 9 x ^ { 2 } + y ^ { 2 } }$$ for which \(y = 0\) when \(x = 1\). Give your answer in the form \(\mathrm { y } = \mathrm { f } ( \mathrm { x } )\), where \(\mathrm { f } ( x )\) is a polynomial in \(x\). [10]
\includegraphics[max width=\textwidth, alt={}, center]{114ece0d-558d-4c02-8a77-034b3681cff9-10_51_1648_527_246}
Question 7
View details
7
  1. Use de Moivre's theorem to show that $$\operatorname { cosec } 7 \theta = \frac { \operatorname { cosec } ^ { 7 } \theta } { 7 \operatorname { cosec } ^ { 6 } \theta - 56 \operatorname { cosec } ^ { 4 } \theta + 112 \operatorname { cosec } ^ { 2 } \theta - 64 }$$
  2. Hence obtain the roots of the equation $$x ^ { 7 } - 14 x ^ { 6 } + 112 x ^ { 4 } - 224 x ^ { 2 } + 128 = 0$$ in the form \(\operatorname { cosec } q \pi\), where \(q\) is rational.
Question 8
View details
8
  1. Find the value of \(a\) for which the system of equations $$\begin{gathered} 3 x + a y = 0
    5 x - y = 0
    x + 3 y + 2 z = 0 \end{gathered}$$ does not have a unique solution.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 0 & 0
    5 & - 1 & 0
    1 & 3 & 2 \end{array} \right)$$
  2. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 2 } = \mathbf { P D P } ^ { - 1 }\).
  3. Use the characteristic equation of \(\mathbf { A }\) to show that $$( \mathbf { A } + 6 \mathbf { I } ) ^ { 2 } = \mathbf { A } ^ { 4 } ( \mathbf { A } + b \mathbf { I } ) ^ { 2 }$$ where \(b\) is an integer to be determined.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.