3
\includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-04_540_1511_276_274}
The diagram shows the curve \(\mathrm { y } = \frac { \mathrm { x } } { 2 \mathrm { x } ^ { 2 } - 1 }\) for \(x \geqslant 1\), together with a set of \(N - 1\) rectangles of unit
width. width.
- By considering the sum of the areas of these rectangles, show that
$$\sum _ { r = 1 } ^ { N } \frac { r } { 2 r ^ { 2 } - 1 } < \frac { 1 } { 4 } \ln \left( 2 N ^ { 2 } - 1 \right) + 1$$
- Use a similar method to find, in terms of \(N\), a lower bound for \(\sum _ { r = 1 } ^ { N } \frac { r } { 2 r ^ { 2 } - 1 }\).