CAIE Further Paper 2 (Further Paper 2) 2021 June

Question 1
View details
1
  1. Find \(a\) and \(b\) such that $$z ^ { 8 } - i z ^ { 5 } - z ^ { 3 } + i = \left( z ^ { 5 } - a \right) \left( z ^ { 3 } - b \right) .$$
  2. Hence find the roots of $$z ^ { 8 } - i z ^ { 5 } - z ^ { 3 } + i = 0$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
Question 2
View details
2 Find the Maclaurin's series for \(\ln \cosh x\) up to and including the term in \(x ^ { 4 }\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-04_540_1511_276_274} The diagram shows the curve \(\mathrm { y } = \frac { \mathrm { x } } { 2 \mathrm { x } ^ { 2 } - 1 }\) for \(x \geqslant 1\), together with a set of \(N - 1\) rectangles of unit
width. width.
  1. By considering the sum of the areas of these rectangles, show that $$\sum _ { r = 1 } ^ { N } \frac { r } { 2 r ^ { 2 } - 1 } < \frac { 1 } { 4 } \ln \left( 2 N ^ { 2 } - 1 \right) + 1$$
  2. Use a similar method to find, in terms of \(N\), a lower bound for \(\sum _ { r = 1 } ^ { N } \frac { r } { 2 r ^ { 2 } - 1 }\).
Question 4
View details
4 By considering the binomial expansions of \(\left( z + \frac { 1 } { z } \right) ^ { 5 }\) and \(\left( z - \frac { 1 } { z } \right) ^ { 5 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$\tan ^ { 5 } \theta = \frac { \sin 5 \theta - \mathrm { a } \sin 3 \theta + \mathrm { b } \sin \theta } { \cos 5 \theta + \mathrm { a } \cos 3 \theta + \mathrm { b } \cos \theta }$$ where \(a\) and \(b\) are integers to be determined.
Question 5
View details
5 The variables \(x\) and \(y\) are related by the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } - 2 \frac { d y } { d x } - 3 y = 4 e ^ { - x }$$
  1. Find the value of the constant \(k\) such that \(\mathrm { y } = \mathrm { kxe } ^ { - \mathrm { x } }\) is a particular integral of the differential equation.
  2. Find the solution of the differential equation for which \(\mathrm { y } = \frac { \mathrm { dy } } { \mathrm { dx } } = \frac { 1 } { 2 }\) when \(x = 0\).
Question 6
View details
6
  1. Starting from the definitions of sinh and cosh in terms of exponentials, prove that $$2 \sinh ^ { 2 } x = \cosh 2 x - 1$$ \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_67_1550_374_347}
    \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_65_1569_468_328}
    \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_67_1573_557_324}
    \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_70_1573_646_324}
    \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_72_1573_735_324}
    \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_72_1570_826_324}
    \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_74_1570_916_324}
    \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_69_1570_1007_324}
  2. Find the solution to the differential equation $$\frac { d y } { d x } + y \operatorname { coth } x = 4 \sinh x$$ for which \(y = 1\) when \(x = \ln 3\).
Question 7
View details
7 The integral \(\mathrm { I } _ { \mathrm { n } }\), where n is an integer, is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 3 } { 2 } } \left( 4 + \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \mathrm { dx }\).
  1. Find the exact value of \(I _ { 1 }\), expressing your answer in logarithmic form.
  2. By considering \(\frac { d } { d x } \left( x \left( 4 + x ^ { 2 } \right) ^ { - \frac { 1 } { 2 } n } \right)\), or otherwise, show that $$4 n l _ { n + 2 } = \frac { 3 } { 2 } \left( \frac { 2 } { 5 } \right) ^ { n } + ( n - 1 ) l _ { n } .$$
  3. Find the value of \(I _ { 5 }\).
Question 8
View details
8
  1. Find the value of \(a\) for which the system of equations $$\begin{array} { r } 13 x + 18 y - 28 z = 0
    - 4 x - a y + 8 z = 0
    2 x + 6 y - 5 z = 0 \end{array}$$ does not have a unique solution.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 13 & 18 & - 28
    - 4 & - 1 & 8
    2 & 6 & - 5 \end{array} \right)$$
  2. Find the eigenvalue of \(\mathbf { A }\) corresponding to the eigenvector \(\left( \begin{array} { l } 2
    0
    1 \end{array} \right)\).
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { - 1 }\).
  4. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\) in terms of \(\mathbf { A }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.