CAIE Further Paper 2 (Further Paper 2) 2020 June

Question 1
View details
1 Find the solution of the differential equation $$\frac { d y } { d x } + 5 y = e ^ { - 7 x }$$ for which \(y = 0\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
Question 2
View details
2 It is given that \(y = 2 ^ { x }\).
  1. By differentiating \(\ln y\) with respect to \(x\), show that \(\frac { \mathrm { dy } } { \mathrm { dx } } = 2 ^ { \mathrm { x } } \ln 2\).
  2. Write down \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\).
  3. Hence find the first three terms in the Maclaurin's series for \(2 ^ { X }\).
Question 3
View details
3
  1. Find the roots of the equation \(z ^ { 3 } = - 1 - \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
    Let \(\mathbf { w } = \mathbf { z } _ { 1 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 2 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 3 } ^ { 3 \mathrm { k } }\), where \(k\) is a positive integer and \(\mathrm { z } _ { 1 } , \mathrm { z } _ { 2 } , \mathrm { z } _ { 3 }\) are the roots of \(\mathrm { z } ^ { 3 } = - 1 - \mathrm { i }\).
  2. Express \(w\) in the form \(R \mathrm { e } ^ { \mathrm { i } \alpha }\), where \(R > 0\), giving \(R\) and \(\alpha\) in terms of \(k\).
    \includegraphics[max width=\textwidth, alt={}, center]{20e14db3-0eb0-4954-91cf-027e16f8bf14-06_889_824_267_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
Question 4
View details
  1. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } x ^ { 2 } d x < \frac { 2 n ^ { 2 } + 3 n + 1 } { 6 n ^ { 2 } }$$
  2. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } x ^ { 2 } \mathrm {~d} x\).
Question 5
View details
5 The curves \(C _ { 1 } : y = \cosh x\) and \(C _ { 2 } : y = \sinh 2 x\) intersect at the point where \(x = a\).
  1. Find the exact value of \(a\), giving your answer in logarithmic form.
  2. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
  3. Find the exact value of the length of the arc of \(C _ { 1 }\) from \(x = 0\) to \(\mathrm { x } = \mathrm { a }\).
Question 6
View details
6 The integral \(\mathrm { I } _ { \mathrm { n } }\), where \(n\) is an integer, is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 1 } { 2 } } \left( 1 - \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \mathrm { dx }\).
  1. Find the exact value of \(I _ { 1 }\).
  2. By considering \(\frac { \mathrm { d } } { \mathrm { dx } } \left( \mathrm { x } \left( 1 - \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \right)\), or otherwise, show that $$\mathrm { nl } _ { \mathrm { n } + 2 } = 2 ^ { \mathrm { n } - 1 } 3 ^ { - \frac { 1 } { 2 } \mathrm { n } } + ( \mathrm { n } - 1 ) \mathrm { I } _ { \mathrm { n } } .$$
  3. Find the exact value of \(I _ { 5 }\) giving the answer in the form \(k \sqrt { 3 }\), where \(k\) is a rational number to be determined.
    \includegraphics[max width=\textwidth, alt={}, center]{20e14db3-0eb0-4954-91cf-027e16f8bf14-11_78_1576_336_321}
Question 7
View details
7 It is given that \(x = t ^ { 3 } y\) and $$t ^ { 3 } \frac { d ^ { 2 } y } { d t ^ { 2 } } + \left( 4 t ^ { 3 } + 6 t ^ { 2 } \right) \frac { d y } { d t } + \left( 13 t ^ { 3 } + 12 t ^ { 2 } + 6 t \right) y = 61 e ^ { \frac { 1 } { 2 } t }$$
  1. Show that $$\frac { d ^ { 2 } x } { d t ^ { 2 } } + 4 \frac { d x } { d t } + 13 x = 61 e ^ { \frac { 1 } { 2 } t }$$
  2. Find the general solution for \(y\) in terms of \(t\).
Question 8
View details
8
  1. Find the values of \(a\) for which the system of equations $$\begin{aligned} 3 x + y + z & = 0
    a x + 6 y - z & = 0
    a y - 2 z & = 0 \end{aligned}$$ does not have a unique solution.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 1 & 1
    0 & 6 & - 1
    0 & 0 & - 2 \end{array} \right) .$$
  2. Use the characteristic equation of \(\mathbf { A }\) to find the inverse of \(\mathbf { A } ^ { 2 }\).
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.