OCR FP1 — Question 1

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicArithmetic Sequences and Series

1 Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \left( 6 r ^ { 2 } + 2 r + 1 \right) = n \left( 2 n ^ { 2 } + 4 n + 3 \right)$$

1 Use the standard results for $\sum _ { r = 1 } ^ { n } r$ and $\sum _ { r = 1 } ^ { n } r ^ { 2 }$ to show that, for all positive integers $n$,

$$\sum _ { r = 1 } ^ { n } \left( 6 r ^ { 2 } + 2 r + 1 \right) = n \left( 2 n ^ { 2 } + 4 n + 3 \right)$$

\hfill \mbox{\textit{OCR FP1  Q1}}