CAIE Further Paper 1 2020 November — Question 3

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicRoots of polynomials

3 The cubic equation \(\mathrm { x } ^ { 3 } + \mathrm { cx } + 1 = 0\), where \(c\) is a constant, has roots \(\alpha , \beta , \gamma\).
  1. Find a cubic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 }\).
  2. Show that \(\alpha ^ { 6 } + \beta ^ { 6 } + \gamma ^ { 6 } = 3 - 2 c ^ { 3 }\).
  3. Find the real value of \(c\) for which the matrix \(\left( \begin{array} { c c c } 1 & \alpha ^ { 3 } & \beta ^ { 3 } \\ \alpha ^ { 3 } & 1 & \gamma ^ { 3 } \\ \beta ^ { 3 } & \gamma ^ { 3 } & 1 \end{array} \right)\) is singular.

3 The cubic equation $\mathrm { x } ^ { 3 } + \mathrm { cx } + 1 = 0$, where $c$ is a constant, has roots $\alpha , \beta , \gamma$.\\
(a) Find a cubic equation whose roots are $\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 }$.\\

(b) Show that $\alpha ^ { 6 } + \beta ^ { 6 } + \gamma ^ { 6 } = 3 - 2 c ^ { 3 }$.\\

(c) Find the real value of $c$ for which the matrix $\left( \begin{array} { c c c } 1 & \alpha ^ { 3 } & \beta ^ { 3 } \\ \alpha ^ { 3 } & 1 & \gamma ^ { 3 } \\ \beta ^ { 3 } & \gamma ^ { 3 } & 1 \end{array} \right)$ is singular.\\

\hfill \mbox{\textit{CAIE Further Paper 1 2020 Q3}}