OCR Further Pure Core 1 2021 June — Question 2

Exam BoardOCR
ModuleFurther Pure Core 1 (Further Pure Core 1)
Year2021
SessionJune
TopicTaylor series
TypeMaclaurin series for ln(a+bx)

2 You are given that \(\mathrm { f } ( x ) = \ln ( 2 + x )\).
  1. Determine the exact value of \(\mathrm { f } ^ { \prime } ( 0 )\).
  2. Show that \(\mathrm { f } ^ { \prime \prime } ( 0 ) = - \frac { 1 } { 4 }\).
  3. Hence write down the first three terms of the Maclaurin series for \(\mathrm { f } ( x )\). You are given that \(\mathbf { A } = \left( \begin{array} { c c c } 1 & 2 & 1
    2 & 5 & 2
    3 & - 2 & - 1 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { c c c } 1 & 0 & 1
    - 8 & 4 & 0
    19 & - 8 & - 1 \end{array} \right)\).
  4. Find \(\mathbf { A B }\).
  5. Hence write down \(\mathbf { A } ^ { - 1 }\).
  6. You are given three simultaneous equations $$\begin{array} { r } x + 2 y + z = 0
    2 x + 5 y + 2 z = 1
    3 x - 2 y - z = 4 \end{array}$$
    1. Explain how you can tell, without solving them, that there is a unique solution to these equations.
    2. Find this unique solution.