Maclaurin series for ln(a+bx)

Finding Maclaurin series for logarithmic functions of the form ln(a+bx) or ln(1/(1-bx)) using differentiation. These are straightforward applications where successive derivatives follow a clear pattern.

6 questions

Edexcel FP2 2017 June Q4
4. $$y = \ln \left( \frac { 1 } { 1 - 2 x } \right) , \quad | x | < \frac { 1 } { 2 }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\)
  2. Hence, or otherwise, find the series expansion of \(\ln \left( \frac { 1 } { 1 - 2 x } \right)\) about \(x = 0\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient in its simplest form.
  3. Use your expansion to find an approximate value for \(\ln \left( \frac { 3 } { 2 } \right)\), giving your answer
    to 3 decimal places.
Edexcel FP2 Q3
3. (a) Given that \(y = \ln ( 1 + 5 x ) , | x | < 0.2\), find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
(b) Hence obtain the M aclaurin series for \(\ln ( 1 + 5 x ) , | x | < 0.2\), up to and including the term in \(x ^ { 3 }\).
OCR FP2 2007 January Q1
1 It is given that \(\mathrm { f } ( x ) = \ln ( 3 + x )\).
  1. Find the exact values of \(f ( 0 )\) and \(f ^ { \prime } ( 0 )\), and show that \(f ^ { \prime \prime } ( 0 ) = - \frac { 1 } { 9 }\).
  2. Hence write down the first three terms of the Maclaurin series for \(\mathrm { f } ( x )\), given that \(- 3 < x \leqslant 3\).
AQA FP3 2010 January Q2
2
  1. Given that \(y = \ln ( 4 + 3 x )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Hence, by using Maclaurin's theorem, find the first three terms in the expansion, in ascending powers of \(x\), of \(\ln ( 4 + 3 x )\).
  3. Write down the first three terms in the expansion, in ascending powers of \(x\), of \(\ln ( 4 - 3 x )\).
  4. Show that, for small values of \(x\), $$\ln \left( \frac { 4 + 3 x } { 4 - 3 x } \right) \approx \frac { 3 } { 2 } x$$
OCR Further Pure Core 1 2018 December Q3
3 You are given that \(\mathrm { f } ( x ) = \ln ( 2 + x )\).
  1. Determine the exact value of \(\mathrm { f } ^ { \prime } ( 0 )\).
  2. Show that \(\mathrm { f } ^ { \prime \prime } ( 0 ) = - \frac { 1 } { 4 }\).
  3. Hence write down the first three terms of the Maclaurin series for \(\mathrm { f } ( x )\).
OCR Further Pure Core 1 2021 June Q2
2 You are given that \(\mathrm { f } ( x ) = \ln ( 2 + x )\).
  1. Determine the exact value of \(\mathrm { f } ^ { \prime } ( 0 )\).
  2. Show that \(\mathrm { f } ^ { \prime \prime } ( 0 ) = - \frac { 1 } { 4 }\).
  3. Hence write down the first three terms of the Maclaurin series for \(\mathrm { f } ( x )\). You are given that \(\mathbf { A } = \left( \begin{array} { c c c } 1 & 2 & 1
    2 & 5 & 2
    3 & - 2 & - 1 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { c c c } 1 & 0 & 1
    - 8 & 4 & 0
    19 & - 8 & - 1 \end{array} \right)\).
  4. Find \(\mathbf { A B }\).
  5. Hence write down \(\mathbf { A } ^ { - 1 }\).
  6. You are given three simultaneous equations $$\begin{array} { r } x + 2 y + z = 0
    2 x + 5 y + 2 z = 1
    3 x - 2 y - z = 4 \end{array}$$
    1. Explain how you can tell, without solving them, that there is a unique solution to these equations.
    2. Find this unique solution.