SPS SPS FM Pure 2020 February — Question 10 77 marks

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2020
SessionFebruary
Marks77
TopicInvariant lines and eigenvalues and vectors

10 The matrix \(\left( \begin{array} { l l } 1 & 1
1 & 0 \end{array} \right)\) is denoted by \(\mathbf { M }\).
  1. Evaluate \(\mathbf { M } ^ { 3 }\). The Fibonacci series \(F _ { 0 } , F _ { 1 } , F _ { 2 } , F _ { 3 } , \ldots\) is defined by
    \(F _ { n + 1 } = F _ { n } + F _ { n - 1 }\) for \(n \geq 1 , F _ { 0 } = 0 , F _ { 1 } = 1\).
  2. Prove by mathematical induction that \(\boldsymbol { M } ^ { n } = \left( \begin{array} { c c } F _ { n + 1 } & F _ { n }
    F _ { n } & F _ { n - 1 } \end{array} \right)\) for \(n \geq 1\).
  3. Use the result of part (b) to find an expression for \(F _ { n + 1 } F _ { n - 1 } - F _ { n } { } ^ { 2 }\) in terms of \(n\), for \(n \geq 1\).
    \section*{ADDITIONAL ANSWER SPACE} If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown.
    1(a)
    \(\left[ \ln \left\{ x + \sqrt { x ^ { 2 } - 9 } \right\} \right] _ { 3 } ^ { 5 }\) \(= \ln ( 5 + 4 ) - \ln ( 3 ) = \ln ( 9 / 3 )\)
    \(= \ln 3\)
    B1
    M1
    A1
    [3]
    Correct indefinite integral
    Substitute and simplify to single logarithm ln 3 only
    1(b)\(\begin{gathered} { \left[ \frac { 1 } { 2 } \sinh ^ { 2 } x \right] _ { 0 } ^ { \ln 3 } \text { or } \left[ \frac { 1 } { 2 } \cosh ^ { 2 } x \right] _ { 0 } ^ { \ln 3 } }
    \text { or } \left[ \frac { 1 } { 8 } \left( e ^ { 2 x } + e ^ { - 2 x } \right) \right] _ { 0 } ^ { \ln 3 }
    = 1 / 2 \left[ 1 / 2 \left( \mathrm { e } ^ { \ln 3 } - \mathrm { e } ^ { - \ln 3 } \right) \right] ^ { 2 } - 0 \text { or equivalent }
    = \frac { 1 } { 2 } \left[ \frac { 1 } { 2 } \left( 3 - \frac { 1 } { 3 } \right) \right] ^ { 2 } = \frac { 8 } { 9 } \end{gathered}\)
    M1
    A1
    M1
    A1
    [4]
    Correct method (e.g. factors can be wrong)
    Correct indefinite integral
    E.g. 25/9 - 1
    Final answer 8/9, completely correct
    2(a)\(\begin{gathered} f ( 0 ) = \pi / 4
    f ^ { \prime } ( x ) = \frac { 1 } { 1 + ( x + 1 ) ^ { 2 } }
    f ^ { \prime } ( 0 ) = \frac { 1 } { 2 }
    f ^ { \prime \prime } ( x ) = - \frac { 2 ( x + 1 ) } { \left( 1 + ( x + 1 ) ^ { 2 } \right) ^ { 2 } }
    f ^ { \prime \prime } ( 0 ) = - \frac { 2 } { 4 } = - \frac { 1 } { 2 } \end{gathered}\)
    B1
    M1
    A1ft
    M1
    A1
    [5]
    Correct f(0)
    First derivative
    Substitute \(0 , \mathrm { ft }\) on their \(f ^ { \prime } ( x )\)
    Second derivative (need not be expanded)
    Substitute 0
    2(b)\(\begin{gathered} \frac { \pi } { 4 } + \frac { 1 } { 2 } x + \frac { 1 } { 2 } \left( - \frac { 1 } { 2 } \right) x ^ { 2 }
    \frac { \pi } { 4 } + \frac { 1 } { 2 } x - \frac { 1 } { 4 } x ^ { 2 } \end{gathered}\)
    M1
    A1
    Substitute into Maclaurin formula
    CAO
    3(a)\(\frac { 1 } { 6 a + 1 } \left( \begin{array} { c c c } 3 a- 31
    - a12 a
    16- 2 \end{array} \right)\)
    M1
    A1
    M1
    A1
    A1
    [5]
    Obtain cofactors
    All cofactors correct and in right place
    Divide by determinant
    Determinant correct ( \(- 6 a - 1\) )
    Completely correct (expect to see all signs reversed)
    3(b)\(- \frac { 1 } { 6 }\)A1ftft on their determinant
    4(a)\includegraphics[max width=\textwidth, alt={}]{6280d53b-3c1c-4dc9-a96b-2c58f2a7bf51-22_199_391_282_420}
    B2
    [2]
    Give B1 if: just one obvious flaw in sketch, or if part of curve for negative \(r\) given, e.g.
    4(b)\(\frac { 1 } { 2 } \int _ { \pi / 3 } ^ { 5 \pi / 3 } \left( \frac { 1 } { 2 } - \cos \theta \right) ^ { 2 } d \theta\) \(\begin{gathered} = \frac { 1 } { 2 } \int _ { \pi / 3 } ^ { 5 \pi / 3 } \left( \frac { 1 } { 4 } - \cos \theta + \cos ^ { 2 } \theta \right) d \theta
    = \frac { 1 } { 2 } \int _ { \pi / 3 } ^ { 5 \pi / 3 } \left( \frac { 3 } { 4 } - \cos \theta + \frac { 1 } { 2 } \cos 2 \theta \right) d \theta
    = \frac { 1 } { 2 } \left[ \frac { 3 } { 4 } \theta - \sin \theta + \frac { 1 } { 2 } \sin 2 \theta \right] _ { \pi / 3 } ^ { 5 \pi / 3 }
    = \frac { 1 } { 2 } \pi + \frac { 3 } { 8 } \sqrt { 3 } \end{gathered}\)
    M1
    M1
    A1
    A1
    A1
    [5]
    Correct expression for area
    Multiply out and use \(\cos 2 \theta\)
    Correct integrand (ignore leading 1/2)
    Correct indefinite integral (ignore leading 1/2)
    Final answer, this or clear exact equivalent only
    5(a)2A1
    5(b)
    Roots are \(\alpha ( 1 + 1 / 2 ) , \beta ( 1 + 1 / 2 ) , \chi \left( 1 + \frac { 1 } { 2 } \right)\)
    Hence put \(y = 3 x / 2\) \(x = 2 y / 3\)
    \(3 ( 2 y / 3 ) ^ { 3 } + 2 ( 2 y / 3 ) ^ { 2 } - 7 ( 2 y / 3 ) - 6 = 0\)
    \(4 y ^ { 3 } + 4 y ^ { 2 } - 21 y - 27 = 0\)
    M1
    A1ft
    M1
    M1
    A1
    [5]
    Use value of \(\alpha \beta \gamma\) in \(\alpha ( 1 + 1 / \alpha \beta \gamma )\) etc Correct new variable, ft on their \(\alpha \beta \gamma\) Inverse function, ft Substitute inverse function
    Complete equation including 0, any letter, any rational multiple
    or\(\begin{aligned}\Sigma \alpha = - 2 / 3 , \Sigma \alpha \beta = - 7 / 3 , \alpha \beta \gamma = 2
    \qquad \begin{array} { l } ( \alpha + \beta + \gamma ) \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right) ( = - 1 )
    ( \alpha \beta + \beta \gamma + \gamma \alpha ) \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right) ^ { 2 } \left( = - \frac { 21 } { 4 } \right) \end{array}
    \qquad \alpha \beta \gamma \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right) ^ { 3 } \left( = \frac { 27 } { 4 } \right)
    \text { Hence equation is } x ^ { 3 } + x ^ { 2 } - \frac { 21 } { 4 } x - \frac { 27 } { 4 } = 0 \end{aligned}\)
    B1
    M1
    M1
    M1
    A1
    All three correct
    Correct formula for \(\Sigma \alpha ^ { \prime }\) and substitute
    Correct formula for \(\Sigma \alpha ^ { \prime } \beta ^ { \prime }\) and substitute
    Correct formula for \(\alpha ^ { \prime } \beta ^ { \prime } \gamma ^ { \prime }\) and substitute
    Correct final equation including 0, any letter, any rational multiple
    \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Further Mathematics Core (Pure) Mark Scheme (total 84)}
    6(a)
    Circle, centre \(( 3 , - 1 )\)
    Radius \(\sqrt { } 2\) indicated
    Interior of circle indicated
    M1
    B1
    A1
    Allow +/- errors
    Needs not to include origin
    Any clear indication of interior
    6(b)
    Point of contact \(( P )\) between circle and tangent through \(O\) clearly identified
    Form appropriate right-angled \(\Delta\)
    \(O C = \sqrt { 10 } , P C = \sqrt { 2 } \Rightarrow O P = 2 \sqrt { 2 }\) and \(\angle P O C = \tan ^ { - 1 } \left( \frac { 1 } { 2 } \right)\)
    \(\angle x O C = \tan ^ { - 1 } \left( \frac { 1 } { 3 } \right)\)
    \(\angle x O P = \tan ^ { - 1 } \left( \frac { \frac { 1 } { 2 } - \frac { 1 } { 3 } } { 1 + \frac { 1 } { 2 } \cdot \frac { 1 } { 3 } } \right) = \tan ^ { - 1 } \left( \frac { 1 } { 7 } \right)\) or \(n = 7\)
    B1
    M1
    M1
    A1
    B1
    M1
    A1
    [7]
    Can be implied by correct working
    Can be implied by correct working
    Use exact method for a difference of angles Either \(\tan ^ { - 1 } ( 1 / 7 )\) or \(n = 7\).
    If exactly 1/7 from calculator, give M0A0
    or
    Point of contact ( \(P\) ) between circle and tangent through \(O\) clearly identified
    \(y = m x\) meets \(( x - 3 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 2\)
    \(( x - 3 ) ^ { 2 } + ( m x + 1 ) ^ { 2 } = 2\) has double roots \(\left( m ^ { 2 } + 1 \right) x ^ { 2 } + 2 ( m - 3 ) x + 8 = 0\) has double roots
    \(4 ( m - 3 ) ^ { 2 } = 4.8 \left( m ^ { 2 } + 1 \right)\)
    \(7 m ^ { 2 } + 6 m - 1 = 0\), so \(m = \frac { 1 } { 7 }\) or - 1
    But \(m\) is not - 1 as this gives minimum, not maximum, argument
    B1
    M1
    M1
    A1
    M1
    A1
    A1
    Can be implied by correct working, provided final answer does not include - 1
    Line and circle equations used
    Discriminant set to zero
    Obtain \(\tan ^ { - 1 } \left( \frac { 1 } { 7 } \right)\) or \(n = 7\)
    Reject - 1 , with reason. Not enough to say " \(m = \frac { 1 } { 7 }\) or - 1 so \(n = 7\) "
    or
    Point of contact \(( P )\) between circle and tangent through \(O\) clearly identified
    Appropriate right-angled \(\Delta\) with centre \(C\)
    \(O C = \sqrt { 10 } , P C = \sqrt { 2 } \Rightarrow O P = 2 \sqrt { 2 }\)
    Circles, centre \(O , r = 2 \sqrt { 2 }\), \\(C , r = \sqrt { 2 }\)
    \(x ^ { 2 } + ( 3 x - 8 ) ^ { 2 } = 8,5 x ^ { 2 } - 24 x + 28 = 0\)
    \(\Rightarrow P = \left( 2 \frac { 4 } { 5 } , \frac { 2 } { 5 } \right)\)
    \(\theta = \tan ^ { - 1 } \left( \frac { 1 } { 7 } \right)\) or \(n = 7\)
    B1
    M1
    B1
    M1
    M1
    A1
    A1
    Can be implied by correct working
    Can be implied by correct working
    \(x ^ { 2 } + y ^ { 2 } = 8\) and \(( x - 3 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 2\)
    Eliminate \(y\), solve quadratic in \(x\)
    Correct \(P\), both cords. allow decimals
    Either \(\tan ^ { - 1 } \left( \frac { 1 } { 7 } \right)\) or \(n = 7\)
    \end{table}
    7(a)
    Distance is \(\frac { | \mathbf { b } \mathbf { . n } - \mathbf { p } | } { | \mathbf { n } | }\) \(\mathbf { b } = ( 9,5,2 ) , \mathbf { n } = ( 3,2 , - 4 )\)
    Scalar product is 29
    Distance is \(32 / \sqrt { } 29\)
    M2
    A1
    A1
    [4]
    Use correct formula with correct \(\mathbf { b }\) and \(\mathbf { n }\)
    Correct scalar product
    Answer (accept 5.94 (3s.f.))
    7(b)\(\begin{aligned}( 3 \mathbf { i } + \mathbf { k } ) \times ( \mathbf { i } - \mathbf { j } - 2 \mathbf { k } )
    = \mathbf { i } + 7 \mathbf { j } - 3 \mathbf { k } \end{aligned}\) \(\begin{gathered} x + 7 y - 3 z = 0
    \left( \begin{array} { c } 1
    7
    - 3 \end{array} \right) \cdot \left( \begin{array} { c } 3
    2
    - 4 \end{array} \right) \end{gathered}\) \(\begin{gathered} \cos \theta = \frac { 29 } { \sqrt { 59 } \sqrt { 29 } }
    134.5 ^ { \circ } \text { or } 2.35 \text { radians } \end{gathered}\)
    M1
    A1
    A1
    M1
    A1ft
    A1
    [6]
    Find perpendicular vector
    Any multiple of this
    Cartesian equation of second plane
    Scalar product of normal vectors of 2 planes
    Correct scalar product and moduli (ft their vectors)
    Correct obtuse angle (awrt \(135 ^ { \circ }\) or 2.35 rad )
    8(a)\(\begin{gathered} \frac { A } { x } + \frac { B x + C } { 4 x ^ { 2 } + 1 }
    A \left( 4 x ^ { 2 } + 1 \right) + ( B x + C ) x \equiv 8 x ^ { 2 } - x + 2
    A = 2 , B = 0 , C = - 1
    \frac { 2 } { x } - \frac { 1 } { 4 x ^ { 2 } + 1 } \end{gathered}\)
    M1
    M1
    M1
    A1
    A1
    [5]
    Attempt at partial fractions
    Set up identity
    Compare coefficients or substitute x -values
    All correct values
    Final answer
    8(b)IF \(\exp \left( \int 2 / x \mathrm {~d} x \right) = x ^ { 2 }\) \(\begin{gathered} y x ^ { 2 } = \int \frac { 2 } { x } - \frac { 1 } { 4 x ^ { 2 } + 1 } d x
    y x ^ { 2 } = 2 \ln x - \frac { 1 } { 2 } \tan ^ { - 1 } ( 2 x ) + c
    y = \frac { 4 \ln x - \tan ^ { - 1 } ( 2 x ) + c ^ { \prime } } { 2 x ^ { 2 } } \end{gathered}\)
    M1
    A1
    M1
    M1
    A1
    A1
    [6]
    Method for IF
    \(x ^ { 2 }\)
    Multiply through by IF and spot link to (a)
    Use \(\tan ^ { - 1 }\)
    \(2 \ln x\) and \(+ c\)
    Final answer, completely correct, any equivalent form, any correct way of writing constant (e.g. c or 2c)
    \section*{Further Mathematics Core (Pure) Mark Scheme (total 84)}
    9(a)\(\begin{aligned}( c + \mathrm { is } ) ^ { 5 } = c ^ { 5 } + 5 \mathrm { is } ^ { 4 } - 10 s ^ { 2 } c ^ { 2 } - 10 \mathrm { is } ^ { 3 } c ^ { 2 } + 5 s ^ { 4 } c + \mathrm { is } ^ { 5 }
    \cos 5 \theta = \cos ^ { 5 } \theta - 10 \sin ^ { 2 } \theta \cos ^ { 3 } \theta + 5 \sin ^ { 4 } \theta \cos \theta
    = c ^ { 5 } - 10 \left( 1 - c ^ { 2 } \right) c ^ { 3 } + 5 \left( 1 - c ^ { 2 } \right) ^ { 2 } c
    = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta \quad \text { AG } \end{aligned}\)
    M1
    A1
    M1
    A1
    [4]
    Use de Moivre (can ignore im parts if clear)
    Correct equating of real parts
    Use \(\sin ^ { 2 } \theta = 1 - \cos ^ { 2 } \theta\)
    Correctly obtain given answer
    9(b)
    Using \(\cos 5 \theta = 0\) gives \(16 c ^ { 5 } - 20 c ^ { 4 } + 5 c = 0\) \(c \neq 0 \text { so } 16 c ^ { 4 } - 20 c ^ { 2 } + 5 = 0\)
    \(c ^ { 2 } = ( 20 \pm \sqrt { } 80 ) / 32\) \(c = \pm \sqrt { \frac { 5 \pm \sqrt { 5 } } { 8 } }\)
    \(\cos \pi / 10 > 0\) so first \(\pm\) is +
    \(\cos \pi / 10 > \cos ( 3 \pi / 10 )\) so second \(\pm\) is +
    M1
    B1
    M1
    A1
    A1
    A1
    [6]
    Use \(\theta = \pi / 10\) and \(\cos ( \pi / 2 ) = 0\)
    Justify cancellation of \(c\)
    Solve quadratic in \(c ^ { 2 }\) by exact method
    Correct expression for \(c\), any combination of \(\pm\) and + signs
    Justify outer +
    Justify inner +
    10(a)\(\left( \begin{array} { l l } 32
    21 \end{array} \right)\)
    B2
    [2]
    If B0, give B1 if \(\mathbf { M } ^ { 2 } = \left( \begin{array} { l l } 21
    11 \end{array} \right)\) seen
    10(b)
    Base case: \(n = 1 , \mathbf { M } = \left( \begin{array} { l l } 11
    10 \end{array} \right) = \left( \begin{array} { l l } F _ { 2 }F _ { 1 }
    F _ { 1 }F _ { 0 } \end{array} \right)\)
    Inductive step: assume \(\mathbf { M } ^ { k } = \left( \begin{array} { c c } F _ { k + 1 }F _ { k }
    F _ { k }F _ { k - 1 } \end{array} \right)\)
    \(\Rightarrow \mathbf { M } ^ { k + 1 } = \left( \begin{array} { c c } F _ { k + 1 }F _ { k }
    F _ { k }F _ { k - 1 } \end{array} \right) \left( \begin{array} { l l } 11
    10 \end{array} \right)\) \(\begin{aligned}= \left( \begin{array} { c c } F _ { k + 1 } + F _ { k }F _ { k } + F _ { k - 1 }
    F _ { k } + F _ { k - 1 }F _ { k } \end{array} \right)
    \left( \begin{array} { c c } F _ { k + 2 }F _ { k + 1 }
    F _ { k + 1 }F _ { k } \end{array} \right) \text { as required } \end{aligned}\)
    Base case and inductive step both true, so statement true for all \(n \in \mathbb { N }\) by mathematical induction
    B1
    B1
    M1
    A1
    A1
    [5]
    Fully correct
    Correct "assume" statement, allow \(n\)
    Consider \(\mathbf { M } \times\) hypothesised \(\mathbf { M } ^ { k }\)
    Correctly show this result
    Award only if all 4 other marks gained
    10(c)
    Det \(\left( \mathbf { M } ^ { n } \right) = F _ { n + 1 } F _ { n - 1 } - F _ { n } { } ^ { 2 }\)
    \(\operatorname { Det } \left( \mathbf { M } ^ { n } \right) = ( \operatorname { Det } \mathbf { M } ) ^ { n }\) \(= ( - 1 ) ^ { n }\)
    M1
    M1
    A1
    [3]
    Use determinant of \(\mathbf { M } ^ { n }\)
    Relate \(\operatorname { det } \mathbf { M } ^ { \boldsymbol { n } }\) to \(\operatorname { det } \mathbf { M }\)
    Correct answer