SPS SPS FM Pure (SPS FM Pure) 2020 February

Question 1
View details
1 In this question you must show detailed reasoning.
  1. Determine the value of $$\int _ { 3 } ^ { 5 } \frac { 1 } { \sqrt { x ^ { 2 } - 9 } } d x$$ giving your answer as a single logarithm.
  2. Determine the exact value of $$\int _ { 0 } ^ { \ln 3 } \sinh x \cosh x d x$$
Question 2
View details
2
  1. Given that $$f ( x ) = \tan ^ { - 1 } ( x + 1 )$$ find \(f ( 0 )\) and \(f ^ { \prime } ( 0 )\), and show that \(f ^ { \prime \prime } ( 0 ) = - \frac { 1 } { 2 }\).
  2. Hence find the first three terms in the Maclaurin series for \(f ( x )\)
Question 3
View details
3
  1. Find the inverse of the matrix \(\left( \begin{array} { l l l } 2 & 0 & 1
    0 & 1 & a
    1 & 3 & 0 \end{array} \right)\) in terms of \(a\).
  2. State the value of \(a\) for which the matrix is singular.
Question 4
View details
4 The equation of a curve in polar coordinates is \(r = \frac { 1 } { 2 } - \cos \theta\).
  1. Sketch the polar graph of the curve.
  2. Find the exact area enclosed by the curve between \(\theta = \frac { 1 } { 3 } \pi\) and \(\theta = \frac { 5 } { 3 } \pi\).
Question 5
View details
5 The roots of the equation \(\quad 3 x ^ { 3 } + 2 x ^ { 2 } - 7 x - 6 = 0\) are \(\alpha , \beta\) and \(\gamma\).
  1. Find the value of \(\alpha \beta \gamma\).
  2. Hence, by making use of a suitable substitution, or otherwise, find a cubic equation whose roots are \(\alpha \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right) , \beta \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right) , \gamma \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right)\).
Question 6
View details
6 Throughout this question, the complex number \(z\) satisfies \(\left| z - z _ { 0 } \right| \leq \sqrt { 2 }\), where \(z _ { 0 } = 3 - \mathrm { i }\).
  1. Draw an Argand diagram to illustrate the locus of \(z\).
  2. In this question you must show detailed reasoning. Show that the greatest possible argument of \(z\) can be written as \(\tan ^ { - 1 } \left( \frac { 1 } { n } \right)\), where \(n\) is a positive integer to be determined and \(\arg z \in ( - \pi , \pi ]\).
Question 7 6 marks
View details
7
  1. Find the shortest distance from the point (9, 5, 2) to the plane \(3 x + 2 y - 4 z = - 3\).
  2. The vector equation of a second plane is given by $$\boldsymbol { r } = \lambda \left( \begin{array} { l } 3
    0
    1 \end{array} \right) + \mu \left( \begin{array} { c } 1
    - 1
    - 2 \end{array} \right)$$ By finding the Cartesian equation of the plane, calculate the obtuse angle between this plane and the plane \(3 x + 2 y - 4 z = - 3\).
    [0pt] [6]
Question 8
View details
8
  1. Express \(\frac { 8 x ^ { 2 } - x + 2 } { x \left( 4 x ^ { 2 } + 1 \right) }\) in partial fractions.
  2. Hence find the general solution to the differential equation $$\frac { d y } { d x } + \frac { 2 y } { x } = \frac { 8 x ^ { 2 } - x + 2 } { x ^ { 3 } \left( 4 x ^ { 2 } + 1 \right) }$$
Question 9
View details
9
  1. Show that \(\cos 5 \theta = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta\).
  2. Use the result of part (a) to prove that \(\cos \frac { \pi } { 10 } = \sqrt { \frac { 5 + \sqrt { 5 } } { 8 } }\).
Question 10 77 marks
View details
10 The matrix \(\left( \begin{array} { l l } 1 & 1
1 & 0 \end{array} \right)\) is denoted by \(\mathbf { M }\).
  1. Evaluate \(\mathbf { M } ^ { 3 }\). The Fibonacci series \(F _ { 0 } , F _ { 1 } , F _ { 2 } , F _ { 3 } , \ldots\) is defined by
    \(F _ { n + 1 } = F _ { n } + F _ { n - 1 }\) for \(n \geq 1 , F _ { 0 } = 0 , F _ { 1 } = 1\).
  2. Prove by mathematical induction that \(\boldsymbol { M } ^ { n } = \left( \begin{array} { c c } F _ { n + 1 } & F _ { n }
    F _ { n } & F _ { n - 1 } \end{array} \right)\) for \(n \geq 1\).
  3. Use the result of part (b) to find an expression for \(F _ { n + 1 } F _ { n - 1 } - F _ { n } { } ^ { 2 }\) in terms of \(n\), for \(n \geq 1\).
    \section*{ADDITIONAL ANSWER SPACE} If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown.
    1(a)
    \(\left[ \ln \left\{ x + \sqrt { x ^ { 2 } - 9 } \right\} \right] _ { 3 } ^ { 5 }\) \(= \ln ( 5 + 4 ) - \ln ( 3 ) = \ln ( 9 / 3 )\)
    \(= \ln 3\)
    B1
    M1
    A1
    [3]
    Correct indefinite integral
    Substitute and simplify to single logarithm ln 3 only
    1(b)\(\begin{gathered} { \left[ \frac { 1 } { 2 } \sinh ^ { 2 } x \right] _ { 0 } ^ { \ln 3 } \text { or } \left[ \frac { 1 } { 2 } \cosh ^ { 2 } x \right] _ { 0 } ^ { \ln 3 } }
    \text { or } \left[ \frac { 1 } { 8 } \left( e ^ { 2 x } + e ^ { - 2 x } \right) \right] _ { 0 } ^ { \ln 3 }
    = 1 / 2 \left[ 1 / 2 \left( \mathrm { e } ^ { \ln 3 } - \mathrm { e } ^ { - \ln 3 } \right) \right] ^ { 2 } - 0 \text { or equivalent }
    = \frac { 1 } { 2 } \left[ \frac { 1 } { 2 } \left( 3 - \frac { 1 } { 3 } \right) \right] ^ { 2 } = \frac { 8 } { 9 } \end{gathered}\)
    M1
    A1
    M1
    A1
    [4]
    Correct method (e.g. factors can be wrong)
    Correct indefinite integral
    E.g. 25/9 - 1
    Final answer 8/9, completely correct
    2(a)\(\begin{gathered} f ( 0 ) = \pi / 4
    f ^ { \prime } ( x ) = \frac { 1 } { 1 + ( x + 1 ) ^ { 2 } }
    f ^ { \prime } ( 0 ) = \frac { 1 } { 2 }
    f ^ { \prime \prime } ( x ) = - \frac { 2 ( x + 1 ) } { \left( 1 + ( x + 1 ) ^ { 2 } \right) ^ { 2 } }
    f ^ { \prime \prime } ( 0 ) = - \frac { 2 } { 4 } = - \frac { 1 } { 2 } \end{gathered}\)
    B1
    M1
    A1ft
    M1
    A1
    [5]
    Correct f(0)
    First derivative
    Substitute \(0 , \mathrm { ft }\) on their \(f ^ { \prime } ( x )\)
    Second derivative (need not be expanded)
    Substitute 0
    2(b)\(\begin{gathered} \frac { \pi } { 4 } + \frac { 1 } { 2 } x + \frac { 1 } { 2 } \left( - \frac { 1 } { 2 } \right) x ^ { 2 }
    \frac { \pi } { 4 } + \frac { 1 } { 2 } x - \frac { 1 } { 4 } x ^ { 2 } \end{gathered}\)
    M1
    A1
    Substitute into Maclaurin formula
    CAO
    3(a)\(\frac { 1 } { 6 a + 1 } \left( \begin{array} { c c c } 3 a- 31
    - a12 a
    16- 2 \end{array} \right)\)
    M1
    A1
    M1
    A1
    A1
    [5]
    Obtain cofactors
    All cofactors correct and in right place
    Divide by determinant
    Determinant correct ( \(- 6 a - 1\) )
    Completely correct (expect to see all signs reversed)
    3(b)\(- \frac { 1 } { 6 }\)A1ftft on their determinant
    4(a)\includegraphics[max width=\textwidth, alt={}]{6280d53b-3c1c-4dc9-a96b-2c58f2a7bf51-22_199_391_282_420}
    B2
    [2]
    Give B1 if: just one obvious flaw in sketch, or if part of curve for negative \(r\) given, e.g.
    4(b)\(\frac { 1 } { 2 } \int _ { \pi / 3 } ^ { 5 \pi / 3 } \left( \frac { 1 } { 2 } - \cos \theta \right) ^ { 2 } d \theta\) \(\begin{gathered} = \frac { 1 } { 2 } \int _ { \pi / 3 } ^ { 5 \pi / 3 } \left( \frac { 1 } { 4 } - \cos \theta + \cos ^ { 2 } \theta \right) d \theta
    = \frac { 1 } { 2 } \int _ { \pi / 3 } ^ { 5 \pi / 3 } \left( \frac { 3 } { 4 } - \cos \theta + \frac { 1 } { 2 } \cos 2 \theta \right) d \theta
    = \frac { 1 } { 2 } \left[ \frac { 3 } { 4 } \theta - \sin \theta + \frac { 1 } { 2 } \sin 2 \theta \right] _ { \pi / 3 } ^ { 5 \pi / 3 }
    = \frac { 1 } { 2 } \pi + \frac { 3 } { 8 } \sqrt { 3 } \end{gathered}\)
    M1
    M1
    A1
    A1
    A1
    [5]
    Correct expression for area
    Multiply out and use \(\cos 2 \theta\)
    Correct integrand (ignore leading 1/2)
    Correct indefinite integral (ignore leading 1/2)
    Final answer, this or clear exact equivalent only
    5(a)2A1
    5(b)
    Roots are \(\alpha ( 1 + 1 / 2 ) , \beta ( 1 + 1 / 2 ) , \chi \left( 1 + \frac { 1 } { 2 } \right)\)
    Hence put \(y = 3 x / 2\) \(x = 2 y / 3\)
    \(3 ( 2 y / 3 ) ^ { 3 } + 2 ( 2 y / 3 ) ^ { 2 } - 7 ( 2 y / 3 ) - 6 = 0\)
    \(4 y ^ { 3 } + 4 y ^ { 2 } - 21 y - 27 = 0\)
    M1
    A1ft
    M1
    M1
    A1
    [5]
    Use value of \(\alpha \beta \gamma\) in \(\alpha ( 1 + 1 / \alpha \beta \gamma )\) etc Correct new variable, ft on their \(\alpha \beta \gamma\) Inverse function, ft Substitute inverse function
    Complete equation including 0, any letter, any rational multiple
    or\(\begin{aligned}\Sigma \alpha = - 2 / 3 , \Sigma \alpha \beta = - 7 / 3 , \alpha \beta \gamma = 2
    \qquad \begin{array} { l } ( \alpha + \beta + \gamma ) \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right) ( = - 1 )
    ( \alpha \beta + \beta \gamma + \gamma \alpha ) \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right) ^ { 2 } \left( = - \frac { 21 } { 4 } \right) \end{array}
    \qquad \alpha \beta \gamma \left( 1 + \frac { 1 } { \alpha \beta \gamma } \right) ^ { 3 } \left( = \frac { 27 } { 4 } \right)
    \text { Hence equation is } x ^ { 3 } + x ^ { 2 } - \frac { 21 } { 4 } x - \frac { 27 } { 4 } = 0 \end{aligned}\)
    B1
    M1
    M1
    M1
    A1
    All three correct
    Correct formula for \(\Sigma \alpha ^ { \prime }\) and substitute
    Correct formula for \(\Sigma \alpha ^ { \prime } \beta ^ { \prime }\) and substitute
    Correct formula for \(\alpha ^ { \prime } \beta ^ { \prime } \gamma ^ { \prime }\) and substitute
    Correct final equation including 0, any letter, any rational multiple
    \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Further Mathematics Core (Pure) Mark Scheme (total 84)}
    6(a)
    Circle, centre \(( 3 , - 1 )\)
    Radius \(\sqrt { } 2\) indicated
    Interior of circle indicated
    M1
    B1
    A1
    Allow +/- errors
    Needs not to include origin
    Any clear indication of interior
    6(b)
    Point of contact \(( P )\) between circle and tangent through \(O\) clearly identified
    Form appropriate right-angled \(\Delta\)
    \(O C = \sqrt { 10 } , P C = \sqrt { 2 } \Rightarrow O P = 2 \sqrt { 2 }\) and \(\angle P O C = \tan ^ { - 1 } \left( \frac { 1 } { 2 } \right)\)
    \(\angle x O C = \tan ^ { - 1 } \left( \frac { 1 } { 3 } \right)\)
    \(\angle x O P = \tan ^ { - 1 } \left( \frac { \frac { 1 } { 2 } - \frac { 1 } { 3 } } { 1 + \frac { 1 } { 2 } \cdot \frac { 1 } { 3 } } \right) = \tan ^ { - 1 } \left( \frac { 1 } { 7 } \right)\) or \(n = 7\)
    B1
    M1
    M1
    A1
    B1
    M1
    A1
    [7]
    Can be implied by correct working
    Can be implied by correct working
    Use exact method for a difference of angles Either \(\tan ^ { - 1 } ( 1 / 7 )\) or \(n = 7\).
    If exactly 1/7 from calculator, give M0A0
    or
    Point of contact ( \(P\) ) between circle and tangent through \(O\) clearly identified
    \(y = m x\) meets \(( x - 3 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 2\)
    \(( x - 3 ) ^ { 2 } + ( m x + 1 ) ^ { 2 } = 2\) has double roots \(\left( m ^ { 2 } + 1 \right) x ^ { 2 } + 2 ( m - 3 ) x + 8 = 0\) has double roots
    \(4 ( m - 3 ) ^ { 2 } = 4.8 \left( m ^ { 2 } + 1 \right)\)
    \(7 m ^ { 2 } + 6 m - 1 = 0\), so \(m = \frac { 1 } { 7 }\) or - 1
    But \(m\) is not - 1 as this gives minimum, not maximum, argument
    B1
    M1
    M1
    A1
    M1
    A1
    A1
    Can be implied by correct working, provided final answer does not include - 1
    Line and circle equations used
    Discriminant set to zero
    Obtain \(\tan ^ { - 1 } \left( \frac { 1 } { 7 } \right)\) or \(n = 7\)
    Reject - 1 , with reason. Not enough to say " \(m = \frac { 1 } { 7 }\) or - 1 so \(n = 7\) "
    or
    Point of contact \(( P )\) between circle and tangent through \(O\) clearly identified
    Appropriate right-angled \(\Delta\) with centre \(C\)
    \(O C = \sqrt { 10 } , P C = \sqrt { 2 } \Rightarrow O P = 2 \sqrt { 2 }\)
    Circles, centre \(O , r = 2 \sqrt { 2 }\), \\(C , r = \sqrt { 2 }\)
    \(x ^ { 2 } + ( 3 x - 8 ) ^ { 2 } = 8,5 x ^ { 2 } - 24 x + 28 = 0\)
    \(\Rightarrow P = \left( 2 \frac { 4 } { 5 } , \frac { 2 } { 5 } \right)\)
    \(\theta = \tan ^ { - 1 } \left( \frac { 1 } { 7 } \right)\) or \(n = 7\)
    B1
    M1
    B1
    M1
    M1
    A1
    A1
    Can be implied by correct working
    Can be implied by correct working
    \(x ^ { 2 } + y ^ { 2 } = 8\) and \(( x - 3 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 2\)
    Eliminate \(y\), solve quadratic in \(x\)
    Correct \(P\), both cords. allow decimals
    Either \(\tan ^ { - 1 } \left( \frac { 1 } { 7 } \right)\) or \(n = 7\)
    \end{table}
    7(a)
    Distance is \(\frac { | \mathbf { b } \mathbf { . n } - \mathbf { p } | } { | \mathbf { n } | }\) \(\mathbf { b } = ( 9,5,2 ) , \mathbf { n } = ( 3,2 , - 4 )\)
    Scalar product is 29
    Distance is \(32 / \sqrt { } 29\)
    M2
    A1
    A1
    [4]
    Use correct formula with correct \(\mathbf { b }\) and \(\mathbf { n }\)
    Correct scalar product
    Answer (accept 5.94 (3s.f.))
    7(b)\(\begin{aligned}( 3 \mathbf { i } + \mathbf { k } ) \times ( \mathbf { i } - \mathbf { j } - 2 \mathbf { k } )
    = \mathbf { i } + 7 \mathbf { j } - 3 \mathbf { k } \end{aligned}\) \(\begin{gathered} x + 7 y - 3 z = 0
    \left( \begin{array} { c } 1
    7
    - 3 \end{array} \right) \cdot \left( \begin{array} { c } 3
    2
    - 4 \end{array} \right) \end{gathered}\) \(\begin{gathered} \cos \theta = \frac { 29 } { \sqrt { 59 } \sqrt { 29 } }
    134.5 ^ { \circ } \text { or } 2.35 \text { radians } \end{gathered}\)
    M1
    A1
    A1
    M1
    A1ft
    A1
    [6]
    Find perpendicular vector
    Any multiple of this
    Cartesian equation of second plane
    Scalar product of normal vectors of 2 planes
    Correct scalar product and moduli (ft their vectors)
    Correct obtuse angle (awrt \(135 ^ { \circ }\) or 2.35 rad )
    8(a)\(\begin{gathered} \frac { A } { x } + \frac { B x + C } { 4 x ^ { 2 } + 1 }
    A \left( 4 x ^ { 2 } + 1 \right) + ( B x + C ) x \equiv 8 x ^ { 2 } - x + 2
    A = 2 , B = 0 , C = - 1
    \frac { 2 } { x } - \frac { 1 } { 4 x ^ { 2 } + 1 } \end{gathered}\)
    M1
    M1
    M1
    A1
    A1
    [5]
    Attempt at partial fractions
    Set up identity
    Compare coefficients or substitute x -values
    All correct values
    Final answer
    8(b)IF \(\exp \left( \int 2 / x \mathrm {~d} x \right) = x ^ { 2 }\) \(\begin{gathered} y x ^ { 2 } = \int \frac { 2 } { x } - \frac { 1 } { 4 x ^ { 2 } + 1 } d x
    y x ^ { 2 } = 2 \ln x - \frac { 1 } { 2 } \tan ^ { - 1 } ( 2 x ) + c
    y = \frac { 4 \ln x - \tan ^ { - 1 } ( 2 x ) + c ^ { \prime } } { 2 x ^ { 2 } } \end{gathered}\)
    M1
    A1
    M1
    M1
    A1
    A1
    [6]
    Method for IF
    \(x ^ { 2 }\)
    Multiply through by IF and spot link to (a)
    Use \(\tan ^ { - 1 }\)
    \(2 \ln x\) and \(+ c\)
    Final answer, completely correct, any equivalent form, any correct way of writing constant (e.g. c or 2c)
    \section*{Further Mathematics Core (Pure) Mark Scheme (total 84)}
    9(a)\(\begin{aligned}( c + \mathrm { is } ) ^ { 5 } = c ^ { 5 } + 5 \mathrm { is } ^ { 4 } - 10 s ^ { 2 } c ^ { 2 } - 10 \mathrm { is } ^ { 3 } c ^ { 2 } + 5 s ^ { 4 } c + \mathrm { is } ^ { 5 }
    \cos 5 \theta = \cos ^ { 5 } \theta - 10 \sin ^ { 2 } \theta \cos ^ { 3 } \theta + 5 \sin ^ { 4 } \theta \cos \theta
    = c ^ { 5 } - 10 \left( 1 - c ^ { 2 } \right) c ^ { 3 } + 5 \left( 1 - c ^ { 2 } \right) ^ { 2 } c
    = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta \quad \text { AG } \end{aligned}\)
    M1
    A1
    M1
    A1
    [4]
    Use de Moivre (can ignore im parts if clear)
    Correct equating of real parts
    Use \(\sin ^ { 2 } \theta = 1 - \cos ^ { 2 } \theta\)
    Correctly obtain given answer
    9(b)
    Using \(\cos 5 \theta = 0\) gives \(16 c ^ { 5 } - 20 c ^ { 4 } + 5 c = 0\) \(c \neq 0 \text { so } 16 c ^ { 4 } - 20 c ^ { 2 } + 5 = 0\)
    \(c ^ { 2 } = ( 20 \pm \sqrt { } 80 ) / 32\) \(c = \pm \sqrt { \frac { 5 \pm \sqrt { 5 } } { 8 } }\)
    \(\cos \pi / 10 > 0\) so first \(\pm\) is +
    \(\cos \pi / 10 > \cos ( 3 \pi / 10 )\) so second \(\pm\) is +
    M1
    B1
    M1
    A1
    A1
    A1
    [6]
    Use \(\theta = \pi / 10\) and \(\cos ( \pi / 2 ) = 0\)
    Justify cancellation of \(c\)
    Solve quadratic in \(c ^ { 2 }\) by exact method
    Correct expression for \(c\), any combination of \(\pm\) and + signs
    Justify outer +
    Justify inner +
    10(a)\(\left( \begin{array} { l l } 32
    21 \end{array} \right)\)
    B2
    [2]
    If B0, give B1 if \(\mathbf { M } ^ { 2 } = \left( \begin{array} { l l } 21
    11 \end{array} \right)\) seen
    10(b)
    Base case: \(n = 1 , \mathbf { M } = \left( \begin{array} { l l } 11
    10 \end{array} \right) = \left( \begin{array} { l l } F _ { 2 }F _ { 1 }
    F _ { 1 }F _ { 0 } \end{array} \right)\)
    Inductive step: assume \(\mathbf { M } ^ { k } = \left( \begin{array} { c c } F _ { k + 1 }F _ { k }
    F _ { k }F _ { k - 1 } \end{array} \right)\)
    \(\Rightarrow \mathbf { M } ^ { k + 1 } = \left( \begin{array} { c c } F _ { k + 1 }F _ { k }
    F _ { k }F _ { k - 1 } \end{array} \right) \left( \begin{array} { l l } 11
    10 \end{array} \right)\) \(\begin{aligned}= \left( \begin{array} { c c } F _ { k + 1 } + F _ { k }F _ { k } + F _ { k - 1 }
    F _ { k } + F _ { k - 1 }F _ { k } \end{array} \right)
    \left( \begin{array} { c c } F _ { k + 2 }F _ { k + 1 }
    F _ { k + 1 }F _ { k } \end{array} \right) \text { as required } \end{aligned}\)
    Base case and inductive step both true, so statement true for all \(n \in \mathbb { N }\) by mathematical induction
    B1
    B1
    M1
    A1
    A1
    [5]
    Fully correct
    Correct "assume" statement, allow \(n\)
    Consider \(\mathbf { M } \times\) hypothesised \(\mathbf { M } ^ { k }\)
    Correctly show this result
    Award only if all 4 other marks gained
    10(c)
    Det \(\left( \mathbf { M } ^ { n } \right) = F _ { n + 1 } F _ { n - 1 } - F _ { n } { } ^ { 2 }\)
    \(\operatorname { Det } \left( \mathbf { M } ^ { n } \right) = ( \operatorname { Det } \mathbf { M } ) ^ { n }\) \(= ( - 1 ) ^ { n }\)
    M1
    M1
    A1
    [3]
    Use determinant of \(\mathbf { M } ^ { n }\)
    Relate \(\operatorname { det } \mathbf { M } ^ { \boldsymbol { n } }\) to \(\operatorname { det } \mathbf { M }\)
    Correct answer