OCR Further Additional Pure AS 2024 June — Question 3

Exam BoardOCR
ModuleFurther Additional Pure AS (Further Additional Pure AS)
Year2024
SessionJune
Topic3x3 Matrices

3 The surface \(S\) has equation \(z = f ( x , y )\), where \(f ( x , y ) = 4 x ^ { 2 } y - 6 x y ^ { 2 } - \frac { 1 } { 12 } x ^ { 4 }\) for all real values of \(x\) and \(y\). You are given that \(S\) has a stationary point at the origin, \(O\), and a second stationary point at the point \(P ( a , b , c )\), where \(\mathrm { c } = \mathrm { f } ( \mathrm { a } , \mathrm { b } )\).
  1. Determine the values of \(a , b\) and \(c\).
  2. Throughout this part, take the values of \(a\) and \(b\) to be those found in part (a).
    1. Evaluate \(\mathrm { f } _ { x }\) at the points \(\mathrm { U } _ { 1 } ( \mathrm { a } - 0.1 , \mathrm {~b} , \mathrm { f } ( \mathrm { a } - 0.1 , \mathrm {~b} ) )\) and \(\mathrm { U } _ { 2 } ( \mathrm { a } + 0.1 , \mathrm {~b} , \mathrm { f } ( \mathrm { a } + 0.1 , \mathrm {~b} ) )\).
    2. Evaluate \(\mathrm { f } _ { y }\) at the points \(\mathrm { V } _ { 1 } ( \mathrm { a } , \mathrm { b } - 0.1 , \mathrm { f } ( \mathrm { a } , \mathrm { b } - 0.1 ) )\) and \(\mathrm { V } _ { 2 } ( \mathrm { a } , \mathrm { b } + 0.1 , \mathrm { f } ( \mathrm { a } , \mathrm { b } + 0.1 ) )\).
    3. Use the answers to parts (b)(i) and (b)(ii) to sketch the portions of the sections of \(S\), given by
      • \(z = f ( x , b )\), for \(| x - a | \leqslant 0.1\),
  3. \(z = f ( a , y )\), for \(| y - b | \leqslant 0.1\).