5 The set \(S\) consists of all \(2 \times 2\) matrices having determinant 1 or - 1 . For instance, the matrices \(\mathbf { P } = \left( \begin{array} { c c } \frac { 1 } { 2 } & \frac { \sqrt { 3 } } { 2 }
- \frac { \sqrt { 3 } } { 2 } & \frac { 1 } { 2 } \end{array} \right) , \mathbf { Q } = - \left( \begin{array} { c c } \frac { 1 } { 2 } & \frac { \sqrt { 3 } } { 2 }
- \frac { \sqrt { 3 } } { 2 } & \frac { 1 } { 2 } \end{array} \right)\) and \(\mathbf { R } = \left( \begin{array} { r r } 1 & 0
0 & - 1 \end{array} \right)\) are elements of \(S\). It is given that \(\times _ { \mathbf { M } }\) is the operation of matrix multiplication.
- State the identity element of \(S\) under \(\times _ { \mathbf { M } }\).
The group \(G\) is generated by \(\mathbf { P }\), under \(\times _ { \mathbf { M } }\).
- Determine the order of \(G\).
The group \(H\) is generated by \(\mathbf { Q }\) and \(\mathbf { R }\), also under \(\times _ { \mathbf { M } }\).
- By finding each element of \(H\), determine the order of \(H\).
- List all the proper subgroups of \(H\).
- State whether each of the following statements is true or false. Give a reason for each of your answers.
- \(G\) is abelian
- \(G\) is cyclic
- \(H\) is abelian
- \(H\) is cyclic