CAIE P1 2004 June — Question 10

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2004
SessionJune
TopicComposite & Inverse Functions

10 The functions \(f\) and \(g\) are defined as follows: $$\begin{array} { l l } \mathrm { f } : x \mapsto x ^ { 2 } - 2 x , & x \in \mathbb { R } ,
\mathrm {~g} : x \mapsto 2 x + 3 , & x \in \mathbb { R } . \end{array}$$
  1. Find the set of values of \(x\) for which \(\mathrm { f } ( x ) > 15\).
  2. Find the range of f and state, with a reason, whether f has an inverse.
  3. Show that the equation \(\operatorname { gf } ( x ) = 0\) has no real solutions.
  4. Sketch, in a single diagram, the graphs of \(y = \mathrm { g } ( x )\) and \(y = \mathrm { g } ^ { - 1 } ( x )\), making clear the relationship between the graphs.