9 Roberto is solving this mathematics problem:
The curve \(C _ { 1 }\) has polar equation
$$r ^ { 2 } = 9 \sin 2 \theta$$
for all possible values of \(\theta\)
Find the area enclosed by \(C _ { 1 }\)
Roberto's solution is as follows:
$$\begin{aligned}
A & = \frac { 1 } { 2 } \int _ { - \pi } ^ { \pi } 9 \sin 2 \theta \mathrm {~d} \theta
& = \left[ - \frac { 9 } { 4 } \cos 2 \theta \right] _ { - \pi } ^ { \pi }
& = 0
\end{aligned}$$
9
- \(\quad\) Sketch the curve \(C _ { 1 }\)
9
- Explain what Roberto has done wrong.
9 - \(\quad\) Find the area enclosed by \(C _ { 1 }\)
9 - \(\quad P\) and \(Q\) are distinct points on \(C _ { 1 }\) for which \(r\) is a maximum. \(P\) is above the initial line.
Find the polar coordinates of \(P\) and \(Q\)
9 - The matrix \(\mathbf { M } = \left[ \begin{array} { l l } 1 & 2
0 & 1 \end{array} \right]\) represents the transformation T
T maps \(C _ { 1 }\) onto a curve \(C _ { 2 }\)
9 - T maps \(P\) onto the point \(P ^ { \prime }\)
Find the polar coordinates of \(P ^ { \prime }\)
[0pt]
[4 marks]
9
- (ii) Find the area enclosed by \(C _ { 2 }\)
Fully justify your answer.