AQA Further AS Paper 1 (Further AS Paper 1) 2022 June

Question 1
View details
1 Which of the following exponential expressions is equivalent to \(2 \sinh x\) ?
Circle your answer.
\(\mathrm { e } ^ { x }\)
\(\mathrm { e } ^ { x } + \mathrm { e } ^ { - x }\)
\(\mathrm { e } ^ { x } - \mathrm { e } ^ { - x }\)
\(\mathrm { e } ^ { - x }\)
Question 2 1 marks
View details
2 The quadratic equation \(x ^ { 2 } + p x + q = 0\) has roots \(\alpha\) and \(\beta\)
Which of the following is equal to \(\alpha \beta\) ?
Circle your answer.
[0pt] [1 mark]
\(p - p - q - q\)
Question 3 1 marks
View details
3 Which of the following transformations is represented by the matrix \(\left[ \begin{array} { c c c } 1 & 0 & 0
0 & - 1 & 0
0 & 0 & 1 \end{array} \right]\) ?
Tick ( \(\checkmark\) ) one box.
[0pt] [1 mark] Rotation of \(180 ^ { \circ }\) about the \(x\)-axis □ Reflection in the plane \(x = 0\) □ Rotation of \(180 ^ { \circ }\) about the \(y\)-axis □ Reflection in the plane \(y = 0\) □
Question 4
View details
4 The complex numbers \(w\) and \(z\) are defined as $$\begin{aligned} w & = 2 ( \cos \alpha + \mathrm { i } \sin \alpha )
z & = 3 ( \cos \beta + \mathrm { i } \sin \beta ) \end{aligned}$$ Find the product \(w z\)
Tick \(( \checkmark )\) one box. $$\begin{aligned} & 5 ( \cos ( \alpha \beta ) + \mathrm { i } \sin ( \alpha \beta ) )
& 6 ( \cos ( \alpha \beta ) + \mathrm { i } \sin ( \alpha \beta ) )
& 5 ( \cos ( \alpha + \beta ) + \mathrm { i } \sin ( \alpha + \beta ) )
& 6 ( \cos ( \alpha + \beta ) + \mathrm { i } \sin ( \alpha + \beta ) ) \end{aligned}$$ \includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-03_113_113_762_1206}
\includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-03_108_108_900_1206}
\includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-03_113_113_1032_1206}
Question 5 3 marks
View details
5 Show that \(( 2 + \mathrm { i } ) ^ { 3 }\) is \(2 + 11 \mathrm { i }\)
[0pt] [3 marks]
Question 6
View details
6 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left[ \begin{array} { c c } 5 & 2
- 3 & 4 \end{array} \right]$$ 6
  1. \(\quad\) Find \(\operatorname { det } \mathbf { A }\)
    6
  2. Find \(\mathbf { A } ^ { - 1 }\)
    6
  3. Given that \(\mathbf { A B } = \left[ \begin{array} { c c } 9 & 6
    5 & 12 \end{array} \right]\) and \(\mathbf { M } = 2 \mathbf { A } + \mathbf { B }\) find the matrix \(\mathbf { M }\)
Question 7
View details
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\begin{aligned} & l _ { 1 } : \mathbf { r } = \left[ \begin{array} { c } 3
1
- 2 \end{array} \right] + \lambda \left[ \begin{array} { c } 3
- 4
1 \end{array} \right]
& l _ { 2 } : \mathbf { r } = \left[ \begin{array} { c } - 12
a
- 3 \end{array} \right] + \mu \left[ \begin{array} { c } 3
2
- 1 \end{array} \right] \end{aligned}$$ 7
  1. Show that the point \(P ( - 3,9 , - 4 )\) lies on \(l _ { 1 }\)
    7
  2. Show that \(l _ { 1 }\) is perpendicular to \(l _ { 2 }\)
    7
  3. Given that the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect, calculate the value of the constant \(a\) 7
  4. Hence, find the coordinates of the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\)
Question 8 3 marks
View details
8 The curve \(C\) has the polar equation $$r = 4 - 2 \cos \theta \quad - \pi < \theta \leq \pi$$ 8
  1. Verify that the point with polar coordinates \(\left( 3 , \frac { \pi } { 3 } \right)\) lies on \(C\)
    8
  2. Find the exact polar coordinates of the point on \(C\) which is furthest from the pole, \(O\) [3 marks]
    8
  3. Find the exact Cartesian coordinates of the point on \(C\) where \(\theta\) is \(\frac { \pi } { 6 }\)
Question 9
View details
9
  1. Show that, for \(r > 0\), $$\ln ( r + 2 ) - \ln r = \ln \left( 1 + \frac { 2 } { r } \right)$$ 9
  2. Hence, using the method of differences, show that $$\sum _ { r = 1 } ^ { n } \ln \left( 1 + \frac { 2 } { r } \right) = \ln \left( \frac { 1 } { 2 } ( n + a ) ( n + b ) \right)$$ where \(a\) and \(b\) are integers to be found.
Question 10
View details
10 The diagram below shows an ellipse \(E\) The coordinate axes are the lines of symmetry of \(E\)
\includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-14_645_780_450_630} 10
  1. Write down an equation of \(E\) 10
  2. The region bounded by the \(x\)-axis and the ellipse \(E\) for \(y \geq 0\) is shaded in the diagram below.
    \includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-15_643_775_408_635} A solid \(S\) is formed by rotating the shaded region through \(360 ^ { \circ }\) about the \(x\)-axis. Show that the volume of \(S\) is \(a \pi\) where \(a\) is an integer to be found.
    \includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-16_2488_1732_219_139}
Question 11
View details
11 Prove by induction that, for all integers \(n \geq 1\), $$\left( \mathbf { A B A } ^ { - 1 } \right) ^ { n } = \mathbf { A B } ^ { n } \mathbf { A } ^ { - 1 }$$ where \(\mathbf { A }\) and \(\mathbf { B }\) are square matrices of equal dimensions, and \(\mathbf { A }\) is non-singular.
Question 12 1 marks
View details
12
  1. Sketch, on the Argand diagram below, the locus of points satisfying the equation $$| z - 2 \mathrm { i } | = 2$$
    \includegraphics[max width=\textwidth, alt={}]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-18_1219_1260_477_392}
    12
  2. Sketch, also on the Argand diagram above, the locus of points satisfying the equation $$\arg z = \frac { \pi } { 3 }$$ [1 mark] 12
  3. For the complex number \(w\) find the maximum value of \(| w |\) such that $$| w - 2 \mathrm { i } | \leq 2 \quad \text { and } \quad 0 \leq \arg w \leq \frac { \pi } { 3 }$$ $$y = \frac { 2 x + 7 } { 3 x + 5 }$$
Question 13
View details
13
  1. Write down the equations of the asymptotes of curve \(C _ { 1 }\) 13 A curve \(C _ { 1 }\) has equation 13
  2. On the axes below, sketch the graph of curve \(C _ { 1 }\)
    Indicate the values of the intercepts of the curve with the axes.
    \includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-20_885_898_1192_571} 13
  3. Hence, or otherwise, solve the inequality $$\frac { 2 x + 7 } { 3 x + 5 } \geq 0$$ 13
  4. Curve \(C _ { 2 }\) is a reflection of curve \(C _ { 1 }\) in the line \(y = - x\)
    Find an equation for curve \(C _ { 2 }\) in the form \(y = \mathrm { f } ( x )\)
Question 14
View details
14 The function f is defined by $$\mathrm { f } ( x ) = \frac { x ^ { 2 } - 3 } { x ^ { 2 } + p x + 7 } \quad x \in \mathbb { R }$$ where \(p\) is a constant.
The graph of \(y = \mathrm { f } ( x )\) has only one asymptote.
14
  1. Write down the equation of the asymptote.
    14
  2. Find the set of possible values of \(p\)

    14
  3. Find the coordinates of the points at which the graph of \(y = \mathrm { f } ( x )\) intersects the axes. \section*{Question 14 continues on the next page} 14
  4. \(\quad A\) curve \(C\) has equation $$y = \frac { x ^ { 2 } - 3 } { x ^ { 2 } - 3 x + 7 }$$ The curve \(C\) has a local minimum at the point \(M\) as shown in the diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-24_371_835_587_605} The line \(y = k\) intersects curve \(C\)
    14
    1. Show that $$19 k ^ { 2 } - 16 k - 12 \leq 0$$ 14
  5. (ii) Hence, find the \(y\)-coordinate of point \(M\)
Question 15 1 marks
View details
15 The two values of \(\theta\) that satisfy the equation $$\sinh ^ { 2 } \theta - \sinh \theta - 2 = 0$$ are \(\theta _ { 1 }\) and \(\theta _ { 2 }\)
15
  1. Hamzah is asked to find the value of \(\theta _ { 1 } + \theta _ { 2 }\)
    He writes his answer as follows:
    The quadratic coefficients are \(a = 1 , b = - 1 , c = - 2\)
    The sum of the roots is \(- \frac { b } { a }\)
    So \(\theta _ { 1 } + \theta _ { 2 } = - \frac { - 1 } { 1 } = 1\)
    Explain Hamzah's error.
    [0pt] [1 mark] 15
  2. Find the correct value of \(\theta _ { 1 } + \theta _ { 2 }\) Give your answer as a single logarithm.
    \includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-28_2492_1721_217_150}