AQA Further AS Paper 1 2020 June — Question 18 2 marks

Exam BoardAQA
ModuleFurther AS Paper 1 (Further AS Paper 1)
Year2020
SessionJune
Marks2
TopicComplex Numbers Argand & Loci

18 The locus of points \(L _ { 1 }\) satisfies the equation \(| z | = 2\) The locus of points \(L _ { 2 }\) satisfies the equation \(\arg ( z + 4 ) = \frac { \pi } { 4 }\)
18
  1. Sketch \(L _ { 1 }\) on the Argand diagram below.
    [0pt] [1 mark]
    \includegraphics[max width=\textwidth, alt={}, center]{86aa9e6f-261c-40d4-8271-a0dc560d8a72-26_1152_1195_644_427} 18
  2. Sketch \(L _ { 2 }\) on the Argand diagram above.
    [0pt] [1 mark] 18
  3. The complex number \(a + \mathrm { i } b\), where \(a\) and \(b\) are real, lies on \(L _ { 1 }\) The complex number \(c + \mathrm { i } d\), where \(c\) and \(d\) are real, lies on \(L _ { 2 }\)
    Calculate the least possible value of the expression $$( c - a ) ^ { 2 } + ( d - b ) ^ { 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{86aa9e6f-261c-40d4-8271-a0dc560d8a72-28_2492_1721_217_150}