AQA Paper 2 2022 June — Question 7

Exam BoardAQA
ModulePaper 2 (Paper 2)
Year2022
SessionJune
TopicDifferentiation Applications
TypeOptimization with constraints

7 The curve \(y = 15 - x ^ { 2 }\) and the isosceles triangle \(O P Q\) are shown on the diagram The curve \(y = 15 - x ^ { 2 }\) and the isosceles triangle \(O P Q\) are shown on the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{ad6590e8-6673-45ca-bef3-a14716978827-10_759_810_388_614} Vertices \(P\) and \(Q\) lie on the curve such that \(Q\) lies vertically above some point ( \(q , 0\) ) The line \(P Q\) is parallel to the \(x\)-axis. 7
  1. Show that the area, \(A\), of the triangle \(O P Q\) is given by $$A = 15 q - q ^ { 3 } \quad \text { for } 0 < q < c$$ where \(c\) is a constant to be found.
    7
  2. Find the exact maximum area of triangle \(O P Q\). Fully justify your answer.