AQA Paper 1 2021 June — Question 15

Exam BoardAQA
ModulePaper 1 (Paper 1)
Year2021
SessionJune
TopicSmall angle approximation

15
  1. Show that $$\sin x - \sin x \cos 2 x \approx 2 x ^ { 3 }$$ for small values of \(x\).
    15
  2. Hence, show that the area between the graph with equation $$y = \sqrt { 8 ( \sin x - \sin x \cos 2 x ) }$$ the positive \(x\)-axis and the line \(x = 0.25\) can be approximated by $$\text { Area } \approx 2 ^ { m } \times 5 ^ { n }$$ where \(m\) and \(n\) are integers to be found.
    15
    1. Explain why $$\int _ { 6.3 } ^ { 6.4 } 2 x ^ { 3 } \mathrm {~d} x$$ is not a suitable approximation for $$\int _ { 6.3 } ^ { 6.4 } ( \sin x - \sin x \cos 2 x ) d x$$ Question 15 continues on the next page 15
  3. (ii) Explain how $$\int _ { 6.3 } ^ { 6.4 } ( \sin x - \sin x \cos 2 x ) d x$$ may be approximated by $$\int _ { a } ^ { b } 2 x ^ { 3 } \mathrm {~d} x$$ for suitable values of \(a\) and \(b\).
    \includegraphics[max width=\textwidth, alt={}, center]{042e248a-9efa-4844-957d-f05715900ffc-31_2492_1721_217_150}
    \includegraphics[max width=\textwidth, alt={}]{042e248a-9efa-4844-957d-f05715900ffc-36_2486_1719_221_150}