AQA AS Paper 2 2021 June — Question 10

Exam BoardAQA
ModuleAS Paper 2 (AS Paper 2)
Year2021
SessionJune
TopicDifferentiation Applications
TypeOptimization with constraints

10 A square sheet of metal has edges 30 cm long. Four squares each with edge \(x \mathrm {~cm}\), where \(x < 15\), are removed from the corners of the sheet. The four rectangular sections are bent upwards to form an open-topped box, as shown in the diagrams.
\includegraphics[max width=\textwidth, alt={}, center]{f87d1b36-26db-4a0b-b9ec-d7d82a396aba-12_392_460_630_347}
\includegraphics[max width=\textwidth, alt={}, center]{f87d1b36-26db-4a0b-b9ec-d7d82a396aba-12_387_437_635_872}
\includegraphics[max width=\textwidth, alt={}, center]{f87d1b36-26db-4a0b-b9ec-d7d82a396aba-12_282_380_703_1318} 10
  1. Show that the capacity, \(C \mathrm {~cm} ^ { 3 }\), of the box is given by $$C = 900 x - 120 x ^ { 2 } + 4 x ^ { 3 }$$ 10
  2. Find the maximum capacity of the box. Fully justify your answer.