Edexcel AEA 2004 June — Question 2

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2004
SessionJune
TopicGeneralised Binomial Theorem
TypeSeries expansion of rational function

2.(a)For the binomial expansion of \(\frac { 1 } { ( 1 - x ) ^ { 2 } } , | x | < 1\) ,in ascending powers of \(x\) ,
(i)find the first four terms,
(ii)write down the coefficient of \(x ^ { n }\) .
(b)Hence,show that,for \(| x | < 1 , \sum _ { n = 1 } ^ { \infty } n x ^ { n } = \frac { x } { ( 1 - x ) ^ { 2 } }\) .
(c)Prove that,for \(| x | < 1 , \sum _ { n = 1 } ^ { \infty } ( a n + 1 ) x ^ { n } = \frac { ( a + 1 ) x - x ^ { 2 } } { ( 1 - x ) ^ { 2 } }\) ,where \(a\) is a constant.
(d)Hence evaluate \(\sum _ { n = 1 } ^ { \infty } \frac { 5 n + 1 } { 2 ^ { 3 n } }\) .