Edexcel AEA (Advanced Extension Award) 2004 June

Question 1
View details
1.Solve the equation \(\cos x + \sqrt { } \left( 1 - \frac { 1 } { 2 } \sin 2 x \right) = 0 , \quad\) in the interval \(0 ^ { \circ } \leq x < 360 ^ { \circ }\) .
Question 2
View details
2.(a)For the binomial expansion of \(\frac { 1 } { ( 1 - x ) ^ { 2 } } , | x | < 1\) ,in ascending powers of \(x\) ,
(i)find the first four terms,
(ii)write down the coefficient of \(x ^ { n }\) .
(b)Hence,show that,for \(| x | < 1 , \sum _ { n = 1 } ^ { \infty } n x ^ { n } = \frac { x } { ( 1 - x ) ^ { 2 } }\) .
(c)Prove that,for \(| x | < 1 , \sum _ { n = 1 } ^ { \infty } ( a n + 1 ) x ^ { n } = \frac { ( a + 1 ) x - x ^ { 2 } } { ( 1 - x ) ^ { 2 } }\) ,where \(a\) is a constant.
(d)Hence evaluate \(\sum _ { n = 1 } ^ { \infty } \frac { 5 n + 1 } { 2 ^ { 3 n } }\) .
Question 3
View details
3. $$\mathrm { f } ( x ) = x ^ { 3 } - ( k + 4 ) x + 2 k , \quad \text { where } k \text { is a constant. }$$ (a)Show that,for all values of \(k\) ,the curve with equation \(y = \mathrm { f } ( x )\) passes through the point \(( 2,0 )\) .
(b)Find the values of \(k\) for which the equation \(\mathrm { f } ( x ) = 0\) has exactly two distinct roots. Given that \(k > 0\) ,that the \(x\)-axis is a tangent to the curve with equation \(y = \mathrm { f } ( x )\) ,and that the line \(y = p\) intersects the curve in three distinct points,
(c)find the set of values that \(p\) can take.
\includegraphics[max width=\textwidth, alt={}, center]{a243ceda-8175-4ae0-9bc7-b3048f468d10-3_573_899_343_704} The circle, with centre \(C\) and radius \(r\), touches the \(y\)-axis at \(( 0,4 )\) and also touches the line with equation \(4 y - 3 x = 0\), as shown in Fig. 1.
    1. Find the value of \(r\).
    2. Show that \(\arctan \left( \frac { 3 } { 4 } \right) + 2 \arctan \left( \frac { 1 } { 2 } \right) = \frac { 1 } { 2 } \pi\).
      (8) The line with equation \(4 x + 3 y = q , q > 12\), is a tangent to the circle.
  1. Find the value of \(q\).
    (4)
Question 5
View details
  1. (a) Given that \(y = \ln \left[ t + \sqrt { } \left( 1 + t ^ { 2 } \right) \right]\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} t } = \frac { 1 } { \sqrt { } \left( 1 + t ^ { 2 } \right) }\).
The curve \(C\) has parametric equations $$x = \frac { 1 } { \sqrt { } \left( 1 + t ^ { 2 } \right) } , \quad y = \ln \left[ t + \sqrt { } \left( 1 + t ^ { 2 } \right) \right] , \quad t \in \mathbb { R }$$ A student was asked to prove that, for \(t > 0\), the gradient of the tangent to \(C\) is negative.
The attempted proof was as follows: $$\begin{aligned} y & = \ln \left( t + \frac { 1 } { x } \right)
& = \ln \left( \frac { t x + 1 } { x } \right)
& = \ln ( t x + 1 ) - \ln x
\therefore \frac { \mathrm {~d} y } { \mathrm {~d} x } & = \frac { t } { t x + 1 } - \frac { 1 } { x }
& = \frac { \frac { t } { x } } { t + \frac { 1 } { x } } - \frac { 1 } { x }
& = \frac { t \sqrt { } \left( 1 + t ^ { 2 } \right) } { t + \sqrt { } \left( 1 + t ^ { 2 } \right) } - \sqrt { } \left( 1 + t ^ { 2 } \right)
& = - \frac { \left( 1 + t ^ { 2 } \right) } { t + \sqrt { } \left( 1 + t ^ { 2 } \right) } \end{aligned}$$ As \(\left( 1 + t ^ { 2 } \right) > 0\), and \(t + \sqrt { } \left( 1 + t ^ { 2 } \right) > 0\) for \(t > 0 , \frac { \mathrm {~d} y } { \mathrm {~d} x } < 0\) for \(t > 0\).
(b) (i) Identify the error in this attempt.
(ii) Give a correct version of the proof.
(c) Prove that \(\ln \left[ - t + \sqrt { } \left( 1 + t ^ { 2 } \right) \right] = - \ln \left[ t + \sqrt { } \left( 1 + t ^ { 2 } \right) \right]\).
(d) Deduce that \(C\) is symmetric about the \(x\)-axis and sketch the graph of \(C\).
Question 6
View details
6. $$\mathrm { f } ( x ) = x - [ x ] , \quad x \geq 0$$ where \([ x ]\) is the largest integer \(\leq x\). For example, \(f ( 3.7 ) = 3.7 - 3 = 0.7 ; f ( 3 ) = 3 - 3 = 0\).
  1. Sketch the graph of \(y = \mathrm { f } ( x )\) for \(0 \leq x < 4\).
  2. Find the value of \(p\) for which \(\int _ { 2 } ^ { p } \mathrm { f } ( x ) \mathrm { d } x = 0.18\). Given that $$\mathrm { g } ( x ) = \frac { 1 } { 1 + k x } , \quad x \geq 0 , \quad k > 0$$ and that \(x _ { 0 } = \frac { 1 } { 2 }\) is a root of the equation \(\mathrm { f } ( x ) = \mathrm { g } ( x )\),
  3. find the value of \(k\).
  4. Add a sketch of the graph of \(y = \mathrm { g } ( x )\) to your answer to part (a). The root of \(\mathrm { f } ( x ) = \mathrm { g } ( x )\) in the interval \(n < x < n + 1\) is \(x _ { n }\), where \(n\) is an integer.
  5. Prove that $$2 x _ { n } ^ { 2 } - ( 2 n - 1 ) x _ { n } - ( n + 1 ) = 0$$
  6. Find the smallest value of \(n\) for which \(x _ { n } - n < 0.05\).
Question 7
View details
7.Triangle \(A B C\) ,with \(B C = a , A C = b\) and \(A B = c\) is inscribed in a circle.Given that \(A B\) is a diameter of the circle and that \(a ^ { 2 } , b ^ { 2 }\) and \(c ^ { 2 }\) are three consecutive terms of an arithmetic progression(arithmetic series),
(a)express \(b\) and \(c\) in terms of \(a\) ,
(b)verify that \(\cot A , \cot B\) and \(\cot C\) are consecutive terms of an arithmetic progression. In an acute-angled triangle \(P Q R\) the sides \(Q R , P R\) and \(P Q\) have lengths \(p , q\) and \(r\) respectively.
(c)Prove that $$\frac { p } { \sin P } = \frac { q } { \sin Q } = \frac { r } { \sin R }$$ Given now that triangle \(P Q R\) is such that \(p ^ { 2 } , q ^ { 2 }\) and \(r ^ { 2 }\) are three consecutive terms of an arithmetic progression,
(d)use the cosine rule to prove that \(\frac { 2 \cos Q } { q } = \frac { \cos P } { p } + \frac { \cos R } { r }\) .
(6)
(e)Using the results given in parts(c)and(d),prove that \(\cot P , \cot Q\) and \(\cot R\) are consecutive terms in an arithmetic progression. Marks for style,clarity and presentation: 7