Edexcel AEA 2024 June — Question 4

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2024
SessionJune
TopicIntegration by Substitution

4.(a)Use the substitution \(x = \sqrt { 3 } \tan u\) to show that $$\int \frac { 1 } { 3 + x ^ { 2 } } \mathrm {~d} x = p \arctan ( p x ) + c$$ where \(p\) is a real constant to be determined and \(c\) is an arbitrary constant.
(b)Use the substitution \(x = \frac { 3 u + 3 } { u - 3 }\) to determine the exact value of \(I\) where $$I = \int _ { - 3 } ^ { 1 } \frac { \ln ( 3 - x ) } { 3 + x ^ { 2 } } \mathrm {~d} x$$ giving your answer in simplest form.
\includegraphics[max width=\textwidth, alt={}, center]{a8e9db6b-dfad-4278-82d8-a8fa5ba61008-10_2264_47_314_1984}