5.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a8e9db6b-dfad-4278-82d8-a8fa5ba61008-14_300_1043_251_513}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Figure 2 shows a sketch of a hexagon \(O A B C D E\) where
-the interior angle at \(O\) and at \(C\) are each \(60 ^ { \circ }\)
-the interior angle at each of the other vertices is \(150 ^ { \circ }\)
-\(O A = O E = B C = C D\)
-\(A B = E D = 3 \times O A\)
Given that \(\overrightarrow { O A } = \mathbf { a }\) and \(\overrightarrow { O E } = \mathbf { e }\)
determine as simplified expressions in terms of \(\mathbf { a }\) and \(\mathbf { e }\)
(a) \(\overrightarrow { A B }\)
(b) \(\overrightarrow { O D }\)
The point \(R\) divides \(A B\) internally in the ratio \(1 : 2\)
(c)Determine \(\overrightarrow { R C }\) as a simplified expression in terms of \(\mathbf { a }\) and \(\mathbf { e }\)
The line through the points \(R\) and \(C\) meets the line through the points \(O\) and \(D\) at the point \(X\) .
(d)Determine \(\overrightarrow { O X }\) in the form \(\lambda \mathbf { a } + \mu \mathbf { e }\) ,where \(\lambda\) and \(\mu\) are real values in simplest form.