OCR D2 — Question 3

Exam BoardOCR
ModuleD2 (Decision Mathematics 2)
TopicMatchings and Allocation

  1. Four sales representatives ( \(R _ { 1 } , R _ { 2 } , R _ { 3 }\) and \(R _ { 4 }\) ) are to be sent to four areas ( \(A _ { 1 } , A _ { 2 } , A _ { 3 }\) and \(A _ { 4 }\) ) such that each representative visits one area. The estimated profit, in tens of pounds, that each representative will make in each area is shown in the table below.
\cline { 2 - 5 } \multicolumn{1}{c|}{}\(A _ { 1 }\)\(A _ { 2 }\)\(A _ { 3 }\)\(A _ { 4 }\)
\(R _ { 1 }\)37294451
\(R _ { 2 }\)45304341
\(R _ { 3 }\)32273950
\(R _ { 4 }\)43255155
Use the Hungarian method to obtain an allocation which will maximise the total profit made from the visits. Show the state of the table after each stage in the algorithm.