3
Maximise \(\quad P = 2 x - 3 y + 4 z\)
subject to \(\quad x + 2 y + z \leqslant 20\)
\(x - y + 3 z \leqslant 24\)
\(3 x - 2 y + 2 z \leqslant 30\)
and \(\quad x \geqslant 0 , y \geqslant 0 , z \geqslant 0\).
- Display the linear programming problem in a Simplex tableau.
- The first pivot to be chosen is from the \(z\)-column. Identify the pivot and explain why this particular value is chosen.
- Perform one iteration of the Simplex method.
- Perform one further iteration.
- Interpret your final tableau and state the values of your slack variables.
[0pt]
[3 marks]