AQA D2 2008 June — Question 3

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2008
SessionJune
TopicDynamic Programming

3 Two people, Roseanne and Collette, play a zero-sum game. The game is represented by the following pay-off matrix for Roseanne.
\multirow{2}{*}{}Collette
Strategy\(\mathrm { C } _ { 1 }\)\(\mathbf { C } _ { \mathbf { 2 } }\)\(\mathrm { C } _ { 3 }\)
\multirow{2}{*}{Roseanne}\(\mathrm { R } _ { 1 }\)-323
\(\mathbf { R } _ { \mathbf { 2 } }\)2-1-4
    1. Find the optimal mixed strategy for Roseanne.
    2. Show that the value of the game is - 0.5 .
    1. Collette plays strategy \(\mathrm { C } _ { 1 }\) with probability \(p\) and strategy \(\mathrm { C } _ { 2 }\) with probability \(q\). Write down, in terms of \(p\) and \(q\), the probability that she plays strategy \(\mathrm { C } _ { 3 }\).
    2. Hence, given that the value of the game is - 0.5 , find the optimal mixed strategy for Collette.