1 [Figures 1 and 2, printed on the insert, are provided for use in this question.] A construction project is to be undertaken. The table shows the activities involved.
| Activity | Immediate Predecessors | Duration (days) |
| A | - | 2 |
| B | A | 5 |
| C | A | 8 |
| D | B | 8 |
| E | B | 10 |
| F | B | 4 |
| G | \(C , F\) | 7 |
| \(H\) | D, E | 4 |
| I | \(G , H\) | 3 |
- Complete the activity network for the project on Figure 1.
- Find the earliest start time for each activity.
- Find the latest finish time for each activity.
- Find the critical path.
- State the float time for each non-critical activity.
- On Figure 2, draw a cascade diagram (Gantt chart) for the project, assuming each activity starts as late as possible.