AQA FP3 2007 January — Question 6

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2007
SessionJanuary
TopicTaylor series
TypeUse binomial with exponential series

6 The function f is defined by \(\mathrm { f } ( x ) = ( 1 + 2 x ) ^ { \frac { 1 } { 2 } }\).
    1. Find f'''(x).
    2. Using Maclaurin's theorem, show that, for small values of \(x\), $$\mathrm { f } ( x ) \approx 1 + x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 }$$
  1. Use the expansion of \(\mathrm { e } ^ { x }\) together with the result in part (a)(ii) to show that, for small values of \(x\), $$\mathrm { e } ^ { x } ( 1 + 2 x ) ^ { \frac { 1 } { 2 } } \approx 1 + 2 x + x ^ { 2 } + k x ^ { 3 }$$ where \(k\) is a rational number to be found.
  2. Write down the first four terms in the expansion, in ascending powers of \(x\), of \(\mathrm { e } ^ { 2 x }\).
  3. Find $$\lim _ { x \rightarrow 0 } \frac { \mathrm { e } ^ { x } ( 1 + 2 x ) ^ { \frac { 1 } { 2 } } - \mathrm { e } ^ { 2 x } } { 1 - \cos x }$$ (4 marks)