Use binomial with exponential series

A question is this type if and only if it requires combining a binomial expansion with an exponential series to find terms of a product.

3 questions

AQA FP3 2009 January Q6
6 The function f is defined by \(\mathrm { f } ( x ) = \mathrm { e } ^ { 2 x } ( 1 + 3 x ) ^ { - \frac { 2 } { 3 } }\).
    1. Use the series expansion for \(\mathrm { e } ^ { x }\) to write down the first four terms in the series expansion of \(\mathrm { e } ^ { 2 x }\).
    2. Use the binomial series expansion of \(( 1 + 3 x ) ^ { - \frac { 2 } { 3 } }\) and your answer to part (a)(i) to show that the first three non-zero terms in the series expansion of \(\mathrm { f } ( x )\) are \(1 + 3 x ^ { 2 } - 6 x ^ { 3 }\).
    1. Given that \(y = \ln ( 1 + 2 \sin x )\), find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    2. By using Maclaurin's theorem, show that, for small values of \(x\), $$\ln ( 1 + 2 \sin x ) \approx 2 x - 2 x ^ { 2 }$$
  1. Find $$\lim _ { x \rightarrow 0 } \frac { 1 - \mathrm { f } ( x ) } { x \ln ( 1 + 2 \sin x ) }$$
AQA FP3 2013 January Q2
2
  1. Write down the expansion of \(\mathrm { e } ^ { 3 x }\) in ascending powers of \(x\) up to and including the term in \(x ^ { 2 }\).
  2. Hence, or otherwise, find the term in \(x ^ { 2 }\) in the expansion, in ascending powers of \(x\), of \(\mathrm { e } ^ { 3 x } ( 1 + 2 x ) ^ { - \frac { 3 } { 2 } }\).
    (4 marks)
AQA FP3 2007 January Q6
6 The function f is defined by \(\mathrm { f } ( x ) = ( 1 + 2 x ) ^ { \frac { 1 } { 2 } }\).
    1. Find f'''(x).
    2. Using Maclaurin's theorem, show that, for small values of \(x\), $$\mathrm { f } ( x ) \approx 1 + x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 }$$
  1. Use the expansion of \(\mathrm { e } ^ { x }\) together with the result in part (a)(ii) to show that, for small values of \(x\), $$\mathrm { e } ^ { x } ( 1 + 2 x ) ^ { \frac { 1 } { 2 } } \approx 1 + 2 x + x ^ { 2 } + k x ^ { 3 }$$ where \(k\) is a rational number to be found.
  2. Write down the first four terms in the expansion, in ascending powers of \(x\), of \(\mathrm { e } ^ { 2 x }\).
  3. Find $$\lim _ { x \rightarrow 0 } \frac { \mathrm { e } ^ { x } ( 1 + 2 x ) ^ { \frac { 1 } { 2 } } - \mathrm { e } ^ { 2 x } } { 1 - \cos x }$$ (4 marks)