AQA FP3 (Further Pure Mathematics 3) 2007 January

Question 1
View details
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \ln \left( 1 + x ^ { 2 } + y \right)$$ and $$y ( 1 ) = 0.6$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.05\), to obtain an approximation to \(y ( 1.05 )\), giving your answer to four decimal places.
  2. Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.05\), to obtain an approximation to \(y ( 1.05 )\), giving your answer to four decimal places.
Question 2
View details
2 A curve has polar equation \(r ( 1 - \sin \theta ) = 4\). Find its cartesian equation in the form \(y = \mathrm { f } ( x )\).
Question 3
View details
3
  1. Show that \(x ^ { 2 }\) is an integrating factor for the first-order differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 2 } { x } y = 3 \left( x ^ { 3 } + 1 \right) ^ { \frac { 1 } { 2 } }$$
  2. Solve this differential equation, given that \(y = 1\) when \(x = 2\).
Question 4
View details
4
  1. Explain why \(\int _ { 0 } ^ { \mathrm { e } } \frac { \ln x } { \sqrt { x } } \mathrm {~d} x\) is an improper integral.
    (1 mark)
  2. Use integration by parts to find \(\int x ^ { - \frac { 1 } { 2 } } \ln x \mathrm {~d} x\).
    (3 marks)
  3. Show that \(\int _ { 0 } ^ { \mathrm { e } } \frac { \ln x } { \sqrt { x } } \mathrm {~d} x\) exists and find its value.
    (4 marks)
Question 5
View details
5 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = 6 + 5 \sin x$$ (12 marks)
Question 6
View details
6 The function f is defined by \(\mathrm { f } ( x ) = ( 1 + 2 x ) ^ { \frac { 1 } { 2 } }\).
    1. Find f'''(x).
    2. Using Maclaurin's theorem, show that, for small values of \(x\), $$\mathrm { f } ( x ) \approx 1 + x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 }$$
  1. Use the expansion of \(\mathrm { e } ^ { x }\) together with the result in part (a)(ii) to show that, for small values of \(x\), $$\mathrm { e } ^ { x } ( 1 + 2 x ) ^ { \frac { 1 } { 2 } } \approx 1 + 2 x + x ^ { 2 } + k x ^ { 3 }$$ where \(k\) is a rational number to be found.
  2. Write down the first four terms in the expansion, in ascending powers of \(x\), of \(\mathrm { e } ^ { 2 x }\).
  3. Find $$\lim _ { x \rightarrow 0 } \frac { \mathrm { e } ^ { x } ( 1 + 2 x ) ^ { \frac { 1 } { 2 } } - \mathrm { e } ^ { 2 x } } { 1 - \cos x }$$ (4 marks)
Question 7
View details
7 A curve \(C\) has polar equation $$r = 6 + 4 \cos \theta , \quad - \pi \leqslant \theta \leqslant \pi$$ The diagram shows a sketch of the curve \(C\), the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{0d894ac0-8d96-4182-8454-c306e1fdad8f-4_599_866_612_587}
  1. Calculate the area of the region bounded by the curve \(C\).
  2. The point \(P\) is the point on the curve \(C\) for which \(\theta = \frac { 2 \pi } { 3 }\). The point \(Q\) is the point on \(C\) for which \(\theta = \pi\).
    Show that \(Q P\) is parallel to the line \(\theta = \frac { \pi } { 2 }\).
  3. The line \(P Q\) intersects the curve \(C\) again at a point \(R\). The line \(R O\) intersects \(C\) again at a point \(S\).
    1. Find, in surd form, the length of \(P S\).
    2. Show that the angle \(O P S\) is a right angle.