5 The sketch shows an Argand diagram. The points \(A\) and \(B\) represent the complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) respectively. The angle \(A O B = 90 ^ { \circ }\) and \(O A = O B\).
\includegraphics[max width=\textwidth, alt={}, center]{847295e3-d806-43b1-8d25-688c5558bfe1-3_533_869_852_632}
- Explain why \(z _ { 2 } = \mathrm { i } z _ { 1 }\).
- On a single copy of the diagram, draw:
- the locus \(L _ { 1 }\) of points satisfying \(\left| z - z _ { 2 } \right| = \left| z - z _ { 1 } \right|\);
- the locus \(L _ { 2 }\) of points satisfying \(\arg \left( z - z _ { 2 } \right) = \arg z _ { 1 }\).
- Find, in terms of \(z _ { 1 }\), the complex number representing the point of intersection of \(L _ { 1 }\) and \(L _ { 2 }\).