AQA FP2 (Further Pure Mathematics 2) 2006 January

Question 1
View details
1
  1. Show that $$\frac { 1 } { r ^ { 2 } } - \frac { 1 } { ( r + 1 ) ^ { 2 } } = \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }$$
  2. Hence find the sum of the first \(n\) terms of the series $$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots$$
Question 2
View details
2 The cubic equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ where \(p , q\) and \(r\) are real, has roots \(\alpha , \beta\) and \(\gamma\).
  1. Given that $$\alpha + \beta + \gamma = 4 \quad \text { and } \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 20$$ find the values of \(p\) and \(q\).
  2. Given further that one root is \(3 + \mathrm { i }\), find the value of \(r\).
Question 3
View details
3 The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by $$z _ { 1 } = \frac { 1 + \mathrm { i } } { 1 - \mathrm { i } } \quad \text { and } \quad z _ { 2 } = \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \mathrm { i }$$
  1. Show that \(z _ { 1 } = \mathrm { i }\).
  2. Show that \(\left| z _ { 1 } \right| = \left| z _ { 2 } \right|\).
  3. Express both \(z _ { 1 }\) and \(z _ { 2 }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  4. Draw an Argand diagram to show the points representing \(z _ { 1 } , z _ { 2 }\) and \(z _ { 1 } + z _ { 2 }\).
  5. Use your Argand diagram to show that $$\tan \frac { 5 } { 12 } \pi = 2 + \sqrt { 3 }$$
Question 4
View details
4
  1. Prove by induction that $$2 + ( 3 \times 2 ) + \left( 4 \times 2 ^ { 2 } \right) + \ldots + ( n + 1 ) 2 ^ { n - 1 } = n 2 ^ { n }$$ for all integers \(n \geqslant 1\).
  2. Show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) 2 ^ { r - 1 } = n 2 ^ { n } \left( 2 ^ { n + 1 } - 1 \right)$$
Question 5
View details
5 The complex number \(z\) satisfies the relation $$| z + 4 - 4 i | = 4$$
  1. Sketch, on an Argand diagram, the locus of \(z\).
  2. Show that the greatest value of \(| z |\) is \(4 ( \sqrt { 2 } + 1 )\).
  3. Find the value of \(z\) for which $$\arg ( z + 4 - 4 \mathrm { i } ) = \frac { 1 } { 6 } \pi$$ Give your answer in the form \(a + \mathrm { i } b\).
Question 6
View details
6 It is given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\).
    1. Show that $$z + \frac { 1 } { z } = 2 \cos \theta$$ (2 marks)
    2. Find a similar expression for $$z ^ { 2 } + \frac { 1 } { z ^ { 2 } }$$ (2 marks)
    3. Hence show that $$z ^ { 2 } - z + 2 - \frac { 1 } { z } + \frac { 1 } { z ^ { 2 } } = 4 \cos ^ { 2 } \theta - 2 \cos \theta$$ (3 marks)
  1. Hence solve the quartic equation $$z ^ { 4 } - z ^ { 3 } + 2 z ^ { 2 } - z + 1 = 0$$ giving the roots in the form \(a + \mathrm { i } b\).
Question 7
View details
7
  1. Use the definitions $$\sinh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } - \mathrm { e } ^ { - \theta } \right) \quad \text { and } \quad \cosh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right)$$ to show that:
    1. \(2 \sinh \theta \cosh \theta = \sinh 2 \theta\);
    2. \(\cosh ^ { 2 } \theta + \sinh ^ { 2 } \theta = \cosh 2 \theta\).
  2. A curve is given parametrically by $$x = \cosh ^ { 3 } \theta , \quad y = \sinh ^ { 3 } \theta$$
    1. Show that $$\left( \frac { \mathrm { d } x } { \mathrm {~d} \theta } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} \theta } \right) ^ { 2 } = \frac { 9 } { 4 } \sinh ^ { 2 } 2 \theta \cosh 2 \theta$$
    2. Show that the length of the arc of the curve from the point where \(\theta = 0\) to the point where \(\theta = 1\) is $$\frac { 1 } { 2 } \left[ ( \cosh 2 ) ^ { \frac { 3 } { 2 } } - 1 \right]$$