AQA C4 2006 January — Question 8

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2006
SessionJanuary
TopicDifferential equations

8
  1. Solve the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = - 2 ( x - 6 ) ^ { \frac { 1 } { 2 } }$$ to find \(t\) in terms of \(x\), given that \(x = 70\) when \(t = 0\).
  2. Liquid fuel is stored in a tank. At time \(t\) minutes, the depth of fuel in the tank is \(x \mathrm {~cm}\). Initially there is a depth of 70 cm of fuel in the tank. There is a tap 6 cm above the bottom of the tank. The flow of fuel out of the tank is modelled by the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = - 2 ( x - 6 ) ^ { \frac { 1 } { 2 } }$$
    1. Explain what happens when \(x = 6\).
    2. Find how long it will take for the depth of fuel to fall from 70 cm to 22 cm .