A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q6
AQA C4 2006 January — Question 6
Exam Board
AQA
Module
C4 (Core Mathematics 4)
Year
2006
Session
January
Topic
Addition & Double Angle Formulae
6
Express \(\cos 2 x\) in the form \(a \cos ^ { 2 } x + b\), where \(a\) and \(b\) are constants.
Hence show that \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \cos ^ { 2 } x \mathrm {~d} x = \frac { \pi } { a }\), where \(a\) is an integer.
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8