AQA C4 2006 January — Question 7

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2006
SessionJanuary
TopicVectors 3D & Lines

7 The quadrilateral \(A B C D\) has vertices \(A ( 2,1,3 ) , B ( 6,5,3 ) , C ( 6,1 , - 1 )\) and \(D ( 2 , - 3 , - 1 )\).
The line \(l _ { 1 }\) has vector equation \(\mathbf { r } = \left[ \begin{array} { r } 6
1
- 1 \end{array} \right] + \lambda \left[ \begin{array} { l } 1
1
0 \end{array} \right]\).
    1. Find the vector \(\overrightarrow { A B }\).
    2. Show that the line \(A B\) is parallel to \(l _ { 1 }\).
    3. Verify that \(D\) lies on \(l _ { 1 }\).
  1. The line \(l _ { 2 }\) passes through \(D ( 2 , - 3 , - 1 )\) and \(M ( 4,1,1 )\).
    1. Find the vector equation of \(l _ { 2 }\).
    2. Find the angle between \(l _ { 2 }\) and \(A C\).