Write down \(\int \sec ^ { 2 } x \mathrm {~d} x\).
Given that \(y = \frac { \cos x } { \sin x }\), use the quotient rule to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } ^ { 2 } x\).
Prove the identity \(( \tan x + \cot x ) ^ { 2 } = \sec ^ { 2 } x + \operatorname { cosec } ^ { 2 } x\).
Hence find \(\int _ { 0.5 } ^ { 1 } ( \tan x + \cot x ) ^ { 2 } \mathrm {~d} x\), giving your answer to two significant figures.