AQA C3 (Core Mathematics 3) 2007 June

Question 1
View details
1
  1. Differentiate \(\ln x\) with respect to \(x\).
  2. Given that \(y = ( x + 1 ) \ln x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  3. Find an equation of the normal to the curve \(y = ( x + 1 ) \ln x\) at the point where \(x = 1\).
Question 2
View details
2
  1. Differentiate \(( x - 1 ) ^ { 4 }\) with respect to \(x\).
  2. The diagram shows the curve with equation \(y = 2 \sqrt { ( x - 1 ) ^ { 3 } }\) for \(x \geqslant 1\).
    \includegraphics[max width=\textwidth, alt={}, center]{9fd9fa54-b0e6-413d-8645-de34b99b859a-02_789_1180_1190_431} The shaded region \(R\) is bounded by the curve \(y = 2 \sqrt { ( x - 1 ) ^ { 3 } }\), the lines \(x = 2\) and \(x = 4\), and the \(x\)-axis. Find the exact value of the volume of the solid formed when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
  3. Describe a sequence of two geometrical transformations that maps the graph of \(y = \sqrt { x ^ { 3 } }\) onto the graph of \(y = 2 \sqrt { ( x - 1 ) ^ { 3 } }\).
Question 3
View details
3
  1. Solve the equation \(\operatorname { cosec } x = 2\), giving all values of \(x\) in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
    (2 marks)
  2. The diagram shows the graph of \(y = \operatorname { cosec } x\) for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
    \includegraphics[max width=\textwidth, alt={}, center]{9fd9fa54-b0e6-413d-8645-de34b99b859a-03_609_1045_559_479}
    1. The point \(A\) on the curve is where \(x = 90 ^ { \circ }\). State the \(y\)-coordinate of \(A\).
    2. Sketch the graph of \(y = | \operatorname { cosec } x |\) for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
  3. Solve the equation \(| \operatorname { cosec } x | = 2\), giving all values of \(x\) in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
    (2 marks)
Question 4
View details
4 [Figure 1, printed on the insert, is provided for use in this question.]
  1. Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to \(\int _ { 1 } ^ { 2 } 3 ^ { x } \mathrm {~d} x\), giving your answer to three significant figures.
  2. The curve \(y = 3 ^ { x }\) intersects the line \(y = x + 3\) at the point where \(x = \alpha\).
    1. Show that \(\alpha\) lies between 0.5 and 1.5.
    2. Show that the equation \(3 ^ { x } = x + 3\) can be rearranged into the form $$x = \frac { \ln ( x + 3 ) } { \ln 3 }$$
    3. Use the iteration \(x _ { n + 1 } = \frac { \ln \left( x _ { n } + 3 \right) } { \ln 3 }\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\) to two significant figures.
    4. The sketch on Figure 1 shows part of the graphs of \(y = \frac { \ln ( x + 3 ) } { \ln 3 }\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
Question 5
View details
5 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{aligned} & \mathrm { f } ( x ) = \sqrt { x - 2 } \text { for } x \geqslant 2
& \mathrm {~g} ( x ) = \frac { 1 } { x } \quad \text { for real values of } x , x \neq 0 \end{aligned}$$
  1. State the range of f .
    1. Find fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = 1\).
  2. The inverse of f is \(\mathrm { f } ^ { - 1 }\). Find \(\mathrm { f } ^ { - 1 } ( x )\).
Question 6
View details
6
  1. Use integration by parts to find \(\int x \mathrm { e } ^ { 5 x } \mathrm {~d} x\).
    1. Use the substitution \(u = \sqrt { x }\) to show that $$\int \frac { 1 } { \sqrt { x } ( 1 + \sqrt { x } ) } \mathrm { d } x = \int \frac { 2 } { 1 + u } \mathrm {~d} u$$
    2. Find the exact value of \(\int _ { 1 } ^ { 9 } \frac { 1 } { \sqrt { x } ( 1 + \sqrt { x } ) } \mathrm { d } x\).
Question 7
View details
7
  1. A curve has equation \(y = \left( x ^ { 2 } - 3 \right) \mathrm { e } ^ { x }\).
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    1. Find the \(x\)-coordinate of each of the stationary points of the curve.
    2. Using your answer to part (a)(ii), determine the nature of each of the stationary points.
Question 8
View details
8
  1. Write down \(\int \sec ^ { 2 } x \mathrm {~d} x\).
  2. Given that \(y = \frac { \cos x } { \sin x }\), use the quotient rule to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } ^ { 2 } x\).
  3. Prove the identity \(( \tan x + \cot x ) ^ { 2 } = \sec ^ { 2 } x + \operatorname { cosec } ^ { 2 } x\).
  4. Hence find \(\int _ { 0.5 } ^ { 1 } ( \tan x + \cot x ) ^ { 2 } \mathrm {~d} x\), giving your answer to two significant figures.