Solve the equation \(\operatorname { cosec } x = 2\), giving all values of \(x\) in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
(2 marks)
The diagram shows the graph of \(y = \operatorname { cosec } x\) for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
\includegraphics[max width=\textwidth, alt={}, center]{9fd9fa54-b0e6-413d-8645-de34b99b859a-03_609_1045_559_479}
The point \(A\) on the curve is where \(x = 90 ^ { \circ }\). State the \(y\)-coordinate of \(A\).
Sketch the graph of \(y = | \operatorname { cosec } x |\) for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
Solve the equation \(| \operatorname { cosec } x | = 2\), giving all values of \(x\) in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
(2 marks)