AQA C1 2007 January — Question 6

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2007
SessionJanuary
TopicIndefinite & Definite Integrals

6 The curve with equation \(y = 3 x ^ { 5 } + 2 x + 5\) is sketched below.
\includegraphics[max width=\textwidth, alt={}, center]{33da89e2-f74f-4d5a-8bbd-ceaa728b6c34-5_428_563_372_740} The curve cuts the \(x\)-axis at the point \(A ( - 1,0 )\) and cuts the \(y\)-axis at the point \(B\).
    1. State the coordinates of the point \(B\) and hence find the area of the triangle \(A O B\), where \(O\) is the origin.
    2. Find \(\int \left( 3 x ^ { 5 } + 2 x + 5 \right) \mathrm { d } x\).
    3. Hence find the area of the shaded region bounded by the curve and the line \(A B\).
    1. Find the gradient of the curve with equation \(y = 3 x ^ { 5 } + 2 x + 5\) at the point \(A ( - 1,0 )\).
    2. Hence find an equation of the tangent to the curve at the point \(A\).