Edexcel FP3 — Question 16

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
TopicConic sections

16. The hyperbola \(C\) has equation \(\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1\).
  1. Show that an equation of the normal to \(C\) at the point \(P ( a \sec t , b \tan t )\) is $$a x \sin t + b y = \left( a ^ { 2 } + b ^ { 2 } \right) \tan t .$$ The normal to \(C\) at \(P\) cuts the \(x\)-axis at the point \(A\) and \(S\) is a focus of \(C\). Given that the eccentricity of \(C\) is \(\frac { 3 } { 2 }\), and that \(O A = 3 O S\), where \(O\) is the origin,
  2. determine the possible values of \(t\), for \(0 \leq t < 2 \pi\).
    [0pt] [P5 June 2003 Qn 1]