Edexcel FP3 — Question 15

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
TopicIntegration by Parts

15. $$I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { x } \mathrm {~d} x \text { and } J _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { - x } \mathrm {~d} x , \quad n \geq 0$$
  1. Show that, for \(n \geq 1\), $$I _ { n } = \mathrm { e } - n I _ { n - 1 } .$$
  2. Find a similar reduction formula for \(J _ { n }\).
  3. Show that \(J _ { 2 } = 2 - \frac { 5 } { \mathrm { e } }\).
  4. Show that \(\int _ { 0 } ^ { 1 } x ^ { n } \cosh x \mathrm {~d} x = \frac { 1 } { 2 } \left( I _ { n } + J _ { n } \right)\).
  5. Hence, or otherwise, evaluate \(\int _ { 0 } ^ { 1 } x ^ { 2 } \cosh x \mathrm {~d} x\), giving your answer in terms of e.
    [0pt] [P5 June 2003 Qn 7]