Edexcel C3 — Question 7

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
TopicExponential Functions

7. A particular species of orchid is being studied. The population \(p\) at time \(t\) years after the study started is assumed to be $$p = \frac { 2800 a \mathrm { e } ^ { 0.2 t } } { 1 + a \mathrm { e } ^ { 0.2 t } } , \text { where } a \text { is a constant. }$$ Given that there were 300 orchids when the study started,
  1. show that \(a = 0.12\),
  2. use the equation with \(a = 0.12\) to predict the number of years before the population of orchids reaches 1850 .
  3. Show that \(p = \frac { 336 } { 0.12 + \mathrm { e } ^ { - 0.2 t } }\).
  4. Hence show that the population cannot exceed 2800.