OCR Further Discrete 2018 December — Question 6

Exam BoardOCR
ModuleFurther Discrete (Further Discrete)
Year2018
SessionDecember
TopicLinear Programming

6 Jack is making pizzas for a party. He can make three types of pizza:
Suitable for vegansSuitable for vegetariansSuitable for meat eaters
Type X
Type Y
Type Z
  • There is enough dough to make 30 pizzas.
  • Type Z pizzas use vegan cheese. Jack only has enough vegan cheese to make 2 type Z pizzas.
  • At least half the pizzas made must be suitable for vegetarians.
  • Jack has enough onions to make 50 type X pizzas or 20 type Y pizzas or 20 type Z pizzas or some mixture of the three types.
Suppose that Jack makes \(x\) type X pizzas, \(y\) type Y pizzas and \(z\) type Z pizzas.
  1. Formulate the constraints above in terms of the non-negative, integer valued variables \(x , y\) and \(z\), together with non-negative slack variables \(s , t , u\) and \(v\). Jack wants to find out the maximum total number of pizzas that he can make.
    1. Set up an initial simplex tableau for Jack's problem.
    2. Carry out one iteration of the simplex algorithm, choosing your pivot so that \(x\) becomes a basic variable. When Jack carries out the simplex algorithm his final tableau is:
      \(P\)\(x\)\(y\)\(z\)\(s\)\(t\)\(u\)\(v\)RHS
      100000\(\frac { 3 } { 7 }\)\(\frac { 2 } { 7 }\)\(28 \frac { 4 } { 7 }\)
      000010\(- \frac { 3 } { 7 }\)\(- \frac { 2 } { 7 }\)\(1 \frac { 3 } { 7 }\)
      000101002
      010000\(\frac { 5 } { 7 }\)\(\frac { 1 } { 7 }\)\(14 \frac { 2 } { 7 }\)
      001100\(- \frac { 2 } { 7 }\)\(\frac { 1 } { 7 }\)\(14 \frac { 2 } { 7 }\)
  2. Use this final tableau to deduce how many pizzas of each type Jack should make. Jack knows that some of the guests are vegans. He decides to make 2 pizzas of type \(Z\).
    1. Plot the feasible region for \(x\) and \(y\).
    2. Complete the branch-and-bound formulation in the Printed Answer Booklet to find the number of pizzas of each type that Jack should make.
      You should branch on \(x\) first. \section*{END OF QUESTION PAPER}