OCR Further Discrete 2018 December — Question 2

Exam BoardOCR
ModuleFurther Discrete (Further Discrete)
Year2018
SessionDecember
TopicGraph Theory Fundamentals

2 Two simply connected graphs are shown below. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{10ca0bf1-beaa-4460-8f28-08f0e4e44d5c-02_307_584_1151_301} \captionsetup{labelformat=empty} \caption{Graph 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{10ca0bf1-beaa-4460-8f28-08f0e4e44d5c-02_307_584_1151_1178} \captionsetup{labelformat=empty} \caption{Graph 2}
\end{figure}
    1. Write down the orders of the vertices for each of these graphs.
    2. How many ways are there to allocate these vertex degrees to a graph with vertices \(\mathrm { P } , \mathrm { Q }\), \(\mathrm { R } , \mathrm { S } , \mathrm { T }\) and U ?
    3. Use the vertex degrees to deduce whether the graphs are Eulerian, semi-Eulerian or neither.
  1. Show that graphs 1 and 2 are not isomorphic.
    1. Write down a Hamiltonian cycle for graph 1.
    2. Use Euler's formula to determine the number of regions for graph 1.
    3. Identify each of these regions for graph 1 by listing the cycle that forms its boundary.