A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure and Mechanics
Vectors 3D & Lines
Q5
OCR Further Pure Core 2 2018 December — Question 5
Exam Board
OCR
Module
Further Pure Core 2 (Further Pure Core 2)
Year
2018
Session
December
Topic
Vectors 3D & Lines
5
Find the shortest distance between the point ( \(- 6,4\) ) and the line \(y = - 0.75 x + 7\). Two lines, \(l _ { 1 }\) and \(l _ { 2 }\), are given by
\(l _ { 1 } : \mathbf { r } = \left( \begin{array} { c } 4
3
- 2 \end{array} \right) + \lambda \left( \begin{array} { c } 2
1
- 4 \end{array} \right)\) and \(l _ { 2 } : \mathbf { r } = \left( \begin{array} { c } 11
- 1
5 \end{array} \right) + \mu \left( \begin{array} { c } 3
- 1
1 \end{array} \right)\).
Find the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
Hence determine the geometrical arrangement of \(l _ { 1 }\) and \(l _ { 2 }\).
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q8
Q9
Q10