OCR Further Pure Core 2 2018 December — Question 4

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2018
SessionDecember
TopicLinear transformations

4 You are given that the matrix \(\mathbf { A } = \left( \begin{array} { c c c } 1 & 0 & 0
0 & \frac { 2 a - a ^ { 2 } } { 3 } & 0
0 & 0 & 1 \end{array} \right)\), where \(a\) is a positive constant, represents the transformation R which is a reflection in 3-D.
  1. State the plane of reflection of R .
  2. Determine the value of \(a\).
  3. With reference to R explain why \(\mathbf { A } ^ { 2 } = \mathbf { I }\), the \(3 \times 3\) identity matrix.