| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2025 |
| Session | June |
| Topic | Reciprocal Trig & Identities |
6. (a) Prove that
$$1 - \cos 2 \theta \equiv \tan \theta \sin 2 \theta , \quad \theta \neq \frac { ( 2 n + 1 ) \pi } { 2 } , \quad n \in \mathbb { Z }$$
(b) Hence solve, for \(- \frac { \pi } { 2 } < x < \frac { \pi } { 2 }\), the equation
$$\left( \sec ^ { 2 } x - 5 \right) ( 1 - \cos 2 x ) = 3 \tan ^ { 2 } x \sin 2 x$$
Give any non-exact answer to 3 decimal places where appropriate.
[0pt]
[BLANK PAGE]